Bacterial selection and characterization of chitinase enzyme from bacteria controlling Fusarium proliferatum

##plugins.themes.bootstrap3.article.main##

MIFTAHUL KHAIRAH
NISA RACHMANIA MUBARIK
LISDAR A. MANAF

Abstract

Abstract. Khairah M, Mubarik NR, Manaf LA. 2023. Bacterial selection and characterization of chitinase enzyme from bacteria controlling Fusarium proliferatum. Biodiversitas 24: 1926-1933. The phytopathogenic fungus Fusarium proliferatum causes wilt rot disease of onion bulbs and many agricultural losses. The biocontrol of F. proliferatum can be approached with chitinase from microorganisms, such as endophytic bacteria. The chitinase enzyme can inhibit and control fungus growth by degrading chitin, the main component of the fungal cell wall. This study aimed to select, characterize, and semi-purifying the chitinase produced by endophytic bacteria and to evaluate its antifungal activity against F. proliferatum. The results showed ABS 4.1.2 isolate produced chitinase and had antagonistic activity against F. proliferatum. The prospective ABS 4.1.2 isolate was identified based on 16S rRNA gene as Pseudomonas aeruginosa. The precipitated chitinase using 60% ammonium sulfate (w/v) showed a specific activity of 19.69 U/mg and increased the purity by 3.60 fold. SDS-PAGE analysis showed that chitinase had an estimated molecular weight of 32 kDa and 65 kDa. The chitinase activity of crude extract and precipitated chitinase were optimum at pH 7 and the temperature of 35°C and 45°C, respectively. The precipitated chitinase showed a higher inhibition compared to 12 hrs of cell culture and crude enzymes against F. proliferatum. The precipitated chitinase and crude enzymes significantly exhibited destructive activity toward F. proliferatum mycelium.

##plugins.themes.bootstrap3.article.details##

References
Afzal I, Iqrar I, Shinwari ZK, Yasmin A. 2017. Plant growth-promoting potential of endophytic bacteria isolated from roots of wild Dodonaea viscosa L. Plant Growth Regul. 81(3):399– 408. DOI:10.1007/s10725-016-0216-5.
Akocak PB, Churey JJ, Worobo RW. 2015. Antagonistic effect of chitinolytic Pseudomonas and Bacillus on growth of fungal hyphae and spores of aflatoxigenic Aspergillus flavus. Food Biosci. 10:48–58. DOI:10.1016/j.fbio.2015.01.005.
Ali MA, Ren H, Ahmed T, Luo J, An Q, Qi X, Li B. 2020. Antifungal effects of rhizospheric bacillus species against bayberry twig blight pathogen Pestalotiopsis versicolor. Agronomy. 10(11). doi:10.3390/agronomy10111811.
Asril M, Mubarik NR, Wahyudi AT. 2014. Partial purification of bacterial chitinase as biocontrol of leaf blight disease on oil palms. Res J Microbiol. 9(6):265-277. DOI: 10.3923/jm.2014.265.277.
Basuki RS. 2016. Identifikasi permasalahan dan analisis usaha tani bawang merah di dataran tinggi pada musim hujan di Kabupaten Majalengka. Jurnal Hortikultura. 24(3):266. DOI:10.21082/jhort.v24n3.2014.p266-275. [Indonesian].
[BPS] Badan Pusat Statistik. 2018. Statistik Tanaman Sayuran dan Buah-Buahan Semusim Indonesia 2018. BPS RI. Jakarta.
Banerjee S, Singh S, Pandey S, Bhandari MS, Pandey A, Giri K. 2020. Biocontrol potential of Pseudomonas azotoformans, Serratia marcescens, and Trichoderma virens against Fusarium wilt of Dalbergia sissoo. For Path. DOI: 10.1111/ efp.1258.
Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72 (1-2): 248-254. DOI: 10.1016/0003- 2697(76)90527-3.
Chalidah N, Khotimah IN, Hakim AR, Meata BA, Puspita ID, Nugraheni PS, Ustadi U, Pudjiraharti S. 2018. Chitinase activity of Pseudomonas stutzeri PT5 in different fermentation conditions. IOP Conf Ser: Earth Environ Sci. 139. DOI: 10.1088/1755-1315/139/1/012042.
Dong-Jun S, Nguyen DMC, Song YS, Jung WJ. 2012. Induction of Defense Response Against Rhizoctonia solani in Cucumber Plants by Endophytic Bacterium Bacillus thuringiensis GS1. J Microbiol Biotechnol. 22(3):407–415. DOI:10.4014/jmb.1107.07027.
Dukare AS, Paul S, Nambi VE, Gupta R, Sharma K, Vishwakarma RK .2019. Exploitation of microbial antagonists for the control of postharvest diseasesof fruits: a review. Crit Rev Food Sci Nutr. 59(9):1498–1513. DOI: 10.1080/10408398.2017.1417235.
Dukare A, Paul S, Arambam A. 2020. Isolation and efficacy of native chitinolytic rhizobacteria for biocontrol activities against Fusarium wilt and plant growth promotion in pigeon pea (Cajanus cajan L.). Egypt J Biol Pest Control. 30(1). DOI:10.1186/s41938-020-00256-7.
Fokkema NJ. 1973. The rôle of saprophytic fungi in antagonism against Drechslera sorokiniana (Helminthosporium sativum) on agar plates and on rye leaves with pollen. Physiol Plant Pathol. 3(2):195–205. DOI:10.1016/0048-4059 (73)90082-9.
Ghadamgahi F, Tarighi S, Taheri P, Saripella GV, Anzalone A, Kalyandurg PB, Catara V, Ortiz R, Vetukuri RR. 2022. Plant growth-promoting activity of Pseudomonas aeruginosa FG106 and Its Ability to Act as a biocontrol agent against Potato, Tomato and Taro Pathogens. Biology (Basel). 11(1). DOI:10.3390/biology11010140.
Haidar R, Roudet J, Bonnard O, Dufour MC, Corio-Costet MF, Fert M, Gautier T, Deschamps A, Fermaud M. 2016. Screening and modes of action of antagonistic bacteria to control the fungal pathogen Phaeomoniella chlamydospora involved in grapevine trunk diseases. Microbiol Res. 192:172–184. DOI:10.1016/j.micres.2016.07.003.
Hamaoka K, Aoki Y, Suzuki S. 2021. Isolation and characterization of endophyte Bacillus velezensis kof112 from grapevine shoot xylem as biological control agent for fungal diseases. Plants. 10(9). DOI:10.3390/plants10091815.
Herdyastuti N, Raharjo TJ, Mudasir M, Matsjeh S. 2010. Chitinase and Chitinolytic Microorganism?: Isolation, Characterization and Potential. Indonesian Journal of Chemistry. 9(1):37–47. DOI:10.22146/ijc.21580.
Jankiewicz U, Brzezinska MS, Saks E. 2012. Identification and characterization of a chitinase of Stenotrophomonas maltophilia, a bacterium that is antagonistic towards fungal phytopathogens. J Biosci Bioeng. 113(1):30–35. DOI:10.1016/j.jbiosc.2011.08.023.
Khan N, Martínez-Hidalgo P, Ice TA, Maymon M, Humm EA, Nejat N, Sanders ER, Kaplan D, Hirsch AM. 2018. Antifungal activity of Bacillus species against Fusarium and analysis of the potential mechanisms used in biocontrol. Front Microbiol. DOI:10.3389/fmicb.2018.02363.
Kumar A, Kumar SPJ, Chintagunta AD, Dinesh KA, Govind Pal, Arvind NS, Jesus SG. 2022. Biocontrol potential of Pseudomonas stutzeri endophyte from Withania somnifera (Ashwagandha) seed extract against pathogenic Fusarium oxysporum and Rhizoctonia solani. Archives of Phytopathology and Plant Protection.55(1).1-18. DOI: 10.1080/03235408.2021.1983384.
Jadhav HP, Sayyed RZ. 2016. Hydrolytic enzymes of rhizospheric microbes in crop protection. MOJ Cell Science & Report. 3(5). DOI:10.15406/mojcsr.2016.03.00070.
Laemmli. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage. Nature. 227:680–685.
Le D, Audenaert K, Haesaert G. 2021. Fusarium basal rot: profile of an increasingly important disease in Allium spp. Trop Plant Pathol. 46(3):241– 253. DOI:10.1007/s40858-021-00421-9.
Lorito M, Harman GE, Hayes CK, Broadway RM, Tronsmo A, Woo SL, Pietro AD. 1992. Chitinolytic enzymes produced by Trichoderma harzianum: antifungal activity of purified endochitinase and chitobiosidase. Phytopathol. 83: 302-307.
Marchesi JR, Sato T, Weightman AJ, Martin TA, Fry JC, Hiom SJ, Wade WG. 1998. Design and Evaluation of Useful Bacterium-Specific PCR Primers That Amplify Genes Coding for Bacterial 16S rRNA. Appl Environ Microbiol. 64(2):795–799. DOI:10.1128/aem.64.2.795- 799.1998.
Melent’ev AI, Aktuganov GE, Galimzyanova NF. 2001. The role of chitinase in the antifungal activity of Bacillus sp. 739. Microbiology. 70(5):548–552. DOI:10.1023/A:1012304004659.
Mota MS, Gomes CB, Souza Júnior IT, Moura AB. 2017. Bacterial selection for biological control of plant disease: criterion determination and validation. Brazil J Microbiol. 48(1):62–70. DOI:10.1016/j.bjm.2016.09.003.
Murtado A, Mubarik NR, Tjahjoleksono A. 2020. Isolation and characterization endophytic bacteria as biological control of fungus Colletotrichum sp. on onion plants (Allium cepa L.). IOP Conf Ser: Earth Environ Sci. 457: 1-9. DOI:10.1088/1755-1315/457/1/012043.
Nagpure A, Choudhary B, Gupta RK. 2014. Chitinases: In agriculture and human healthcare. Crit Rev Biotechnol. 34(3):215–232. DOI:10.3109/07388551.2013.790874.
Panpatte DG, Jhala YK, Shelat HN, Vyas RV. 2016. Pseudomonas fluorescens: a promising biocontrol agent and PGPR for sustainable agriculture. In: Singh DP, Singh HB, Prabha R (eds). Microbial Inoculants in Sustainable Agricultural Productivity. Springer, New Delhi.
Proctor RH, Desjardins AK, Moretti A. 2010. Biological and chemical complexity of Fusarium proliferatum. In: Strange RN dan Gullino MD (eds). The Role of Plant Pathology in Food Safety and Food Security. Springer, New York (USA).
Saber WIA, Ghoneem KM, Al-Askar AA, Rashad YM, Ali AA, Rashad EM. 2015. Chitinase production by Bacillus subtilis ATCC 11774 and its effect on biocontrol of Rhizoctonia diseases of potato. Acta Biol Hung. 66(4):436–448. DOI:10.1556/018.66.2015.4.8.
Scopes RK. 1994. Protein Purification, Principles, and Practice. Springer-Verlag, New York (USA).
Senol M, Nadaroglu H, Dikbas N, Kotan R. 2014. Purification of Chitinase enzymes from Bacillus subtilis bacteria TV-125, investigation of kinetic properties and antifungal activity against Fusarium culmorum. Ann Clin Microbiol Antimicrob. 13(1):1–7. DOI:10.1186/s12941-014-0035-3.
Sharma CK, Vishnoi VK, Dubey RC, Maheshwari DK. 2018. A twin rhizospheric bacterial consortium induces systemic resistance to a phytopathogen Macrophomina phaseolina in mung bean. Rhizosphere. 5:71–75. DOI:10.1016/j.rhisph.2018.01.001.
Singh SP, Gaur R. 2016. Evaluation of antagonistic and plant growth promoting activities of chitinolytic endophytic actinomycetes associated with medicinal plants against Sclerotium rolfsii in chickpea. J Appl Microbiol. 121(2):506–518. DOI:10.1111/jam.13176.
Spindler KD. 1997. Chitinase and chitosanase assays. In: Muzarelli RAA, Peter MG (eds) Chitin Handbook. Alda Tecnografica, Grottamare (IT).
Stankovic S, Levic J, Petrovic T, Logrieco A, Moretti A. 2007. Pathogenicity and mycotoxin production by Fusarium proliferatum isolated from onion and garlic in Serbia. Eur J Plant Pathol. 118: 165–172. DOI.10.1007/s10658-007- 9126-8.
Stoykov YM, Pavlov AI, Krastanov AI. 2015. Chitinase biotechnology: production, purification, and application. Eng Life Sci. 15(1):30–38. DOI:10.1002/elsc.201400173.
Suganthi M, Arvinth S, Kumar RR. 2015. Detection of chitinase activity and its characterization from Pseudomonas fluorescens of tea rhizosphere. J Planta Crops. 43(3). DOI:10.19071/jpc.2015.v43.i3.2859.
Tan D. Fu L. Han B. Sun X. Zheng P. Zhang J. 2015. Identification of an endophytic antifungal bacterial strain isolated from the rubber tree and its application in the biological control of banana Fusarium wilt. PLoS One. 10(7). DOI:10.1371/journal.pone.0131974.
Villarreal-Delgado MF, Villa-Rodríguez ED, Cira-Chávez LA, Estrada-Alvarado MI, Parra-Cota FI, De los Santos-Villalobos S. 2018. El género Bacillus como agente de control biológico y sus implicaciones en la bioseguridad agrícola. Revista Mexicana de Fitopatología, Mexican Journal of Phytopathology. 36(1). DOI:10.18781/r.mex.fit.1706-5.
Veliz EA, Martínez-Hidalgo P, Hirsch AM. 2017. Chitinase-producing bacteria and their role in biocontrol. AIMS Microbiol. 3(3):689–705. DOI:10.3934/microbiol.2017.3.689.
Wang SL, Chen SJ, Wang CL. 2008. Purification and characterization of chitinases and chitosanases from a new species strain Pseudomonas sp. TKU015 using shrimp shells as a substrate. Carbohydr Res. 343(7):1171–1179. DOI:10.1016/j.carres.2008.03.018.
Wang SL, Lin BS, Liang TW, Wang CL, Wu PC, Liu JR. 2010. Purification and characterization of Chitinase from a new species strain, Pseudomonas sp. TKU008. J Microbiol Biotechnol. 20(6):1001–1005. DOI:10.4014/jmb.0911.11017.
Wang Z, Wang Y, Zheng L, Yang X, Liu H, Guo J. 2014. Isolation and characterization of an antifungal protein from Bacillus licheniformis HS10. Biochem Biophys Res Commun. 454(1):48–52. DOI:10.1016/j.bbrc.2014.10.031.
Won SJ, Choub V, Kwon JH, Kim DH, Ahn YS. 2018. The control of Fusarium root rot and development of coastal pine (Pinus thunbergii Parl.) Seedlings in a container nursery by use of bacillus licheniformis MH48. Forests. 10(1). DOI:10.3390/f10010006.
Wulandari AW, Hidayat SH. 2016. Deteksi virus pada bawang merah (Allium cepa var. ascalonicum) dengan metode dot immuno binding assay. J. Hort. 25(4): 350-356. [Indonesian].
Yamazaki M, Morita Y, Kashiwa T, Teraoka T, Arie T. 2013. Fusarium proliferatum, an additional bulb rot pathogen of Chinese chive. J Gen Plant Pathol. 79(6):431–434. DOI:10.1007/s10327-013-0473-3.
Yu X, Ai C, Xin L, Zhou G. 2011. The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. Eur J Soil Biol. 47(2):138–145. DOI:10.1016/j.ejsobi.2010.11.001.