Characterization of microbiota and secretory Ig-A in the domestic duck (Anas platyrhynchos) small and large intestine

##plugins.themes.bootstrap3.article.main##

R. SUSANTI
NUR RAHAYU UTAMI
ARI YUNIASTUTI

Abstract


Abstract. Susanti R, Utami NR, Yuniastuti A. 2023. Characterization of microbiota and secretory Ig-A in the domestic duck (Anas platyrhynchos)small and large intestineBiodiversitas 24: 2458-2466The Microbiome composition could affect the duck's intestines' microenvironment, which may shape the microstructure's anatomy, metabolism, and immune system. Therefore, this study aims to characterize the intestinal microbiome's abundance, diversity, and IgA distribution in ducks' intestines. This study took 15 healthy domestic ducks (Anas platyrhynchosLinnaeus, 1758) from an intensive duck farm in Central Java, Indonesia. Five grams of each small and large intestine content were collected aseptically for metagenomic analysis. Then, the intestine organs were taken for immunohistochemistry preparations to depict the IgA distribution. The results showed that the small intestine has a greater bacterial abundance community, with 18 phyla, while only 13 are found in the large intestine. Interestingly, three phyla: Firmicutes, Actinobacteria, and Bacteroidetes, were found dominantly in both organs. However, the comparison of Firmicutes and Bacteroidetes ratio was higher in the small intestine (2357.76) than large intestine (10.64). The IgA distribution in the small and large intestines showed intermediate staining intensity (score: 2.07-2.20) and a final Allred score of 5.0 (positive). Even though dysbiosis microbiome was present in intestines with dominant species Streptococcus and Enterococcus, it seems no significant IgA over secretion. Understanding duck's gut immune response is important because it is highly tolerant to the pathogens that make them play an important role as an environmental reservoir for pathogenic viruses and bacteria and may potentially comprehend future infectious disease outbreaks.


##plugins.themes.bootstrap3.article.details##

References
Ali A, Tan HY, Kaiko GE. 2020. Role of the intestinal epithelium and its interaction with the microbiota in food allergy. Front Immunol 11: 604054. DOI: 10.3389/fimmu.2020.604054.
Best AA, Porter AL, Fraley SM, Fraley GS. 2017. Characterization of gut microbiome dynamics in developing pekin ducks and impact of management system. Front Microbiol 7: 2125. DOI: 10.3389/fmicb.2016.02125
Callahan BJ, Mcmurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holman SP. 2016. DADA2: High resolution sample inference from Illumina amplicon data. Nat Methods 13 97): 581-583. DOI: 10.1038/nmeth.3869.DADA2
Cao Y, Liu H, Qin N, Ren X, Zhu B, Xia X. 2020. Impact of food additives on the composition and function of gut microbiota: A review. Trends Food Sci Technol 99: 295-310. DOI: 10.1016/j.tifs.2020.03.006.
Chao A. 1984. Nonparametric Estimation of the Number of Classes in a Population. Scand Stat Theory Appl 11 (4): 265-270.
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7 (5): 335-336. DOI: 10.1038/nmeth.f.303.
Cotozzolo E, Cremonesi P, Curone G, Menchetti L, Riva F, Biscarini F, Marongiu ML, Castrica M, Castiglioni B, Miraglia D, Luridiana S, Brecchia G. 2020. Characterization of bacterial microbiota composition along the gastrointestinal tract in rabbits. Animals (Basel) 11 (1): 31. DOI: 10.3390/ani11010031.
Craft J, Eddington H, Christman ND, Pryor W, Chaston JM, Erickson DL, Wilson E. 2022. Increased microbial diversity and decreased prevalence of common pathogens in the gut microbiomes of wild turkeys compared to domestic turkeys. Appl Environ Microbiol 88 (5): e01423-21. DOI: 10.1128/aem.01423-21.
Dai SJ, Zhang KY, Ding XM, Bai SP, Luo YH, Wang JP, & Zeng Q F. 2018. Effect of dietary non-phytate phosphorus levels on the diversity and structure of cecal microbiota in meat duck from 1 to 21 d of age. Poult Sci 97(7):2441-2450. DOI: 10.3382/ ps/pey090
DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL. 2006. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72 (2): 5069-5072. DOI: 10.1128/AEM.03006-05.
Donaldson GP, Ladinsky MS, Yu KB, Sanders JG, Yoo BB, Chou WC, Conner ME, Earl AM, Knight R, Bjorkman PJ, Mazmanian SK. 2018. Gut microbiota utilize immunoglobulin a for mucosal colonization. Science 360 (6390): 795-800. DOI: 10.1126/science.aaq0926.
Elsasser TH. 2022 Immunometabolic considerations with regard to the domestic chicken, Gallus gallus. Anim Front 12 (5): 8-10. DOI: 10.1093/af/vfac052
Elson CO, Alexander KL. 2015. Host-microbiota interactions in the intestine. Dig Dis 33 (2): 131-136, 2015. DOI: 10.1159/000369534.
Fadlallah J, Kafsi HE, Sterlin D, Juste C, Parizot C, Dorgham K, Autaa G, Gouas D, Almeida M, Lepage P, Pons N, Chatelier EL, Levenez F, Kennedy S, Galleron N, de Barros JPP, Malphettes M, Galicier L, Boutboul D, Mathian A, Miyara M, Oksenhendler E, Amoura Z, Doré J, Fieschi C, Ehrlich SD, Larsen M, Gorochov G. 2018. Microbial ecology perturbation in human IgA deficiency. Sci Transl Med 10 (439): eaan1217. DOI: 10.1126/scitranslmed.aan1217
Fedchenko N, Reifenrath J. 2014. Different approaches for interpretation and reporting of immunohistochemistry analysis results in the bone tissue – a review. Diagn Pathol 9: 221. DOI: 10.1186/s13000-014-0221-9.
Figueroa T, Bessière P, Coggon A, Bouwman KM, van der Woude R, Delverdier M, Verheije MH, de Vries RP, Volmer R. 2020. The microbiota contributes to the control of highly pathogenic H5N9 influenza virus replication in ducks. J Virol 94 (10): e00289-20. DOI:10.1128/JVI.00289-20
Garro C, Brun A, Karasov WH, Caviedes-Vidal E. 2018. Small intestinal epithelial permeability to water-soluble nutrients higher in passerine birds than in rodents. J Anim Physiol Anim Nutr (Berl) 102: 1766-1773. DOI: 10.1111/jpn.12969.
Guo B, Li D, Zhou B, Jiang Y, Bai H, Zhang Y, Xu Q, Zhao W, Chen G. 2019. Comparative characterization of bacterial communities in geese consuming of different proportions of ryegrass. Plos One 14 (10): e0223445. DOI: 10.1371/journal.pone.0223445
Holm JB, Humphrys MS, Robinson CK, Settles ML, Ott S, Fu L, Yang H, Gajer P, He X, McComb E, Gravitt PE, Ghanem KG, Brotman RM, Ravel J. 2019. Ultrahigh-throughput multiplexing and sequencing of >500 basepair amplicon regions on the illumina HiSeq 2500 platform. mSystems 4 (1): 1-10. DOI:10.1128/msystems.0002919.
Huang FC. 2021. The interleukins orchestrate mucosal immune responses to Salmonella infection in the intestine. Cells 10 10(12):3492. DOI: 10.3390/cells10123492
Khaleel IM, Atiea GD. 2017. Morphological and histochemical study of small intestine in indigenous ducks (Anas playrhynchos). IOSR J Agric Vet Sci 10 (7): 19-27. DOI: 10.9790/2380-1007021927.
Koerdt S, Siebers J, Bloch W, Ristow O, Kuebler AC, Reuther T.2014. Role of oxidative and nitrosative stress in autogenous bone grafts to the mandible using guided bone regeneration and a deproteinized bovine bone material. J Craniomaxillofac Surg.42 (5): 560-567. DOI: 10.1016/j.jcms.2013.07.027.
Liu Y, Li Y, Feng X, Wang Z, Xia Z. 2018. Dietary supplementation with Clostridium butyricum modulates serum lipid metabolism, meat quality, and the amino acid and fatty acid composition of Peking ducks. Poult Sci 97 (9): 3218-3229. DOI: 10.3382/ps/pey162.
Luo Q, Lei X, Xu J, Jahangir A, He J, Huang C, Liu W, Cheng A, Tang L, Geng Y, Chen Z. 2021. An altered gut microbiota in duck-origin parvovirus infection on cherry valley ducklings is associated with mucosal barrier dysfunction. Poult Sci 100 (4): 101021. DOI: 10.1016/j.psj.2021.101021
Lyu W, Liu X, Lu L, Dai B, Wang W, Yang H, Xiao Y. 2021. Cecal microbiota modulates fat deposition in muscovy ducks. Front Vet Sci 8: 609348. DOI: 10.3389/fvets.2021.609348.
Magne F, Gotteland M, Gauthier L, Zazueta A, Pesoa S, Navarrete P, Balamurugan R. 2020. The Firmicutes/Bacteroidetes ratio: a relevant marker of gut dysbiosis in obese patients? Nutrients 12 (5): 1474. DOI: 10.3390/nu12051474
Mailhe M, Ricaboni D, Vitton V, Gonzalez JM, Bachar D, Dubourg G, Cadoret F, Robert C, Delerce J, Levasseur A, Fournier PE, Angelakis E, Lagier JC, Raoult D. 2018. Repertoire of the gut microbiota from stomach to colon using culturomics and next-generation sequencing. BMC Microbiol 18 (1): 157. DOI: 10.1186/s12866-018-1304-7.
Maki JJ, Klima CL, Sylte MJ, Looft T. 2019. The microbial pecking order: utilization of intestinal microbiota for poultry health. Microorganisms 7: 376. DOI: 10.3390/microorganisms7100376.
Mckee LS, la Rosa SL, Westereng B, Eijsink VG, Pope PB, Larsbrink J. 2021. Polysaccharide degradation by the Bacteroidetes: mechanisms and nomenclature. Environ Microbiol Rep 13 (5): 559-581. DOI: 10.1111/1758-2229.12980.
Pabst O, Slack E. 2020. IgA and the intestinal microbiota: the importance of being specific. Mucosal Immunol 13: 12-21. DOI: 10.1038/s41385-019-0227-4
Penny HA, Domingues RG, Krauss MZ, Melo-Gonzalez F, Lawson MAE, Dickson S, Parkinson J, Hurry M, Purse C, Jegham CE, Godinho-Silva C, Rendas M, Veiga-Fernandes H, Bechtold DA, Grencis RK, Toellner KM, Waisman A, Swann JR, Gibbs JE, Hepworth MR. 2022. Rhythmicity of intestinal IgA responses confers oscillatory commensal microbiota mutualism. Sci Immunol 7 (75): eabk2541. DOI: 10.1126/sciimmunol.abk2541.
Robak OH, Heimesaat MM, Kruglov AA, Prepens S, Ninnemann J, Gutbier B, Reppe K, Hochrein H, Suter M, Kirschning CJ, Marathe V, Buer J, Hornef MW, Schnare M, Schneider P, Witzenrath M, Bereswill S, Steinhoff U, Suttorp N, Sander LE, Chaput C, Opitz B. 2018. Antibiotic treatment-induced secondary IgA deficiency enhances susceptibility to Pseudomonas aeruginosa pneumonia. J Clin Investig 128 (8): 3535–3545. DOI: 10.1172/JCI97065.
Rohaeni ES, Subhan A, Hanifah VW, Bakrie B, Sumantri I. 2021. Effects of feeding alabio ducks with fresh golden snail on egg production and quality. J Hunan Univ Nat Sci 48 (10): 305-313
Schofield WB, Palm NW. 2018. Gut microbiota: IgA protects the pioneers. Curr Biol 28 (18): R1117–R1119. DOI: 10.1016/j.cub.2018.08.019
Schroeder BO. 2019. Fight them or feed them: How the intestinal mucus layer manages the gut microbiota. Gastroenterol Rep 7 (1): 3-12. DOI: 10.1093/gastro/goy052
Shannon CE, Weaver W. 1949. The Mathematical Theory of Communication. University of Illinois Press, Urbana
Simpson EH. 1949. Measurement of diversity. Nature 163 (1): 688. DOI: 10.1038/163688a0.
Skrypnik K, Suliburska J. 2018. Association between the gut microbiota and mineral metabolism. J Sci Food Agric 98 (7): 2449-2460. DOI: 10.1002/jsfa.8724
Susanti R, Dafip M, Christijanti W, Yuniastuti A. 2021a. The interaction of intestinal bacteria and feed: A case study of intensive-duck husbandry in Central Java. J Indonesian Trop Anim Agric 46 (2): 154-165. DOI: 10.14710/jitaa.46.2.154-165.
Susanti R, Christijanti W, Yuniastuti A. 2021b. Immunohistochemical distribution of immunoglobulin-A in relation to the intestinal microbiota of Cairina moschata (Muscovy) duck. J Phys Conf Ser 1918: 052004. DOI: 10.1088/1742-6596/1918/5/052004.
Susanti R, Yuniastuti A, Sasi FA, Dafip M. 2020. Metagenomic analysis of intestinal microbiota in geese from different farming systems in Gunungpati, Semarang. Indones J Biotechnol 25 (2): 76-83. DOI: 10.22146/ijbiotech.53936.
Tao Z, Zhu C, Xu W, Shi Z, Zhang S, Song W, Liu H, Li H. 2020. Riemerella anatipestifer infection affects intestinal barrier structure and immune reactions in the duck cecum. Avian Pathol 49 (6): 572-580. DOI: 10.1080/03079457.2020.1792414
Tezuka H, Ohteki T. 2019. Regulation of IgA production by intestinal dendritic cells and related cells. Front Immunol 10: 1891. DOI: 10.3389/fimmu.2019.01891.
Vasaï F, Ricaud KB, Bernadet MD, Cauquil L, Bouchez O, Combes S, Davail S. 2014a. Overfeeding and genetics affect the composition of intestinal microbiota in Anas platyrhynchos (pekin) and Cairina moschata (muscovy) ducks. FEMS Microbiol Ecol 87 (1): 204-216. DOI: 10.1111/1574-6941.12217.
Vasaï F, Ricaud KB, Cauquil L, Daniel P, Peillod C, Gontier K, Tizaoui A, Bouchez O, Combes S, Davail S. 2014b. Lactobacillus sakei modulates mule duck microbiota in ileum and ceca during overfeeding. Poult Sci 93 (4): 916-925. DOI: 10.3382/ps.2013-03497.
Volk N, Lacy B. 2017. Anatomy and physiology of the small bowel. Gastrointest Endosc Clin N Am 27 (1): 1-13. DOI: 10.1016/j.giec.2016.08.001.
Waite DW, Taylor MW. 2014. Characterizing the avian gut microbiota: membership, driving influences, and potential function. Front Microbiol 5 (223): 1-12. DOI: 10.3389/fmicb.2014.00223.
Wang S, Chen L, He M, Shen J, Li G, Tao Z, Wu R, Lu L. 2018. Different rearing conditions alter gut microbiota composition and host physiology in Shaoxing ducks. Sci Rep 8: 7387. DOI: 10.1038/s41598-018-25760-7.
Wei R, Ye F, He F, Song Q, Xiong X, Yang W, Xu H, Li L, Liu H, Zeng X, Chen L, Han C. 2020. Comparison of overfeeding influence on slaughter performance, small intestinal physiology and microbiota between Gang goose and Tianfu meat goose. J World's Poult Res 10 (2): 348-358. DOI: 10.36380/jwpr.2020.40 Comparison.
Wen C, Yan W, Sun C, Ji C, Zhou Q, Zhang D, Zheng J, Yang N. 2019. The gut microbiota is largely independent of host genetics in regulating fat deposition in chickens. ISME J 13 (Suppl 1):1422-1436. DOI: 10.1038/s41396-019- 0367-2
Wessels AG. 2022. Influence of the gut microbiome on feed intake of farm animals. Microorganisms 10 (7): 1305 DOI: 10.3390/microorganisms10071305
Wexler AG, Goodman AL. 2017. An insider’s perspective: Bacteroides as a window into the microbiome. Nat Microbiol 2: 17026. DOI: 10.1038/nmicrobiol.2017.26.
Wu B, Li L, Ruan T, Peng X. 2018. Effect of methionine deficiency on duodenal and jejunal IgA+ B cell count and immunoglobulin level of broilers. Iran J Vet Res 19(3):165-171.
Xia WG, Abouelezz KFM, Fouad M, Chen W, Ruan D, Wang S, Azzam MWM, Luo X, Fan QL, Zhang YN, Zheng CT. 2019. Productivity, reproductive performance, and fat deposition of laying duck breeders in response to concentrations of dietary energy and protein. Poult Sci 98 (9): 3729-3738. DOI: 10.3382/ps/pez061
Xiao Y, Xiang Y, Zhou W, Chen J, Li K, Yang H. 2017. Microbial community mapping in intestinal tract of broiler chicken. Poult Sci 96 (5): 1387-1393. DOI: 10.3382/ps/pew372
Xie F, Xu L, Wang Y, Mao S. 2021. Metagenomic sequencing reveals that high-grain feeding alters the composition and metabolism of cecal microbiota and induces cecal mucosal injury in sheep. mSystems 6 (5): e0091521. DOI: 10.1128/msystems.00915-21.
Yang H, Lyu W, Lu L, Shi X, Li N, Wang W, Xiao Y. 2020. Biogeography of microbiome and short-chain fatty acids in the gastrointestinal tract of duck. Poult Sci 99 (8): 4016-4027. DOI: 10.1016/j.psj.2020.03.040
Zhang H, Qin S, Zhu Y, Zhang X, Du P, Huang Y, Michiels J, Zeng Q, Chen W. 2022. Dietary resistant starch alleviates Escherichia coli-induced bone loss in meat ducks by promoting short-chain fatty acid production and inhibiting Malt1/NF-?B inflamasome activation. J Anim Sci Biotechnol 13 (1): 92. DOI: 10.1186/s40104-022-00739-7.
Zhao G, Zhou L, Dong Y, Cheng Y, Song Y. 2017. The gut microbiome of hooded cranes (Grus monacha) wintering at Shengjin Lake, China. Microbiologyopen 6 (3): e00447. DOI: 10.1002/mbo3.447.
Zhao Y, Xiuhong L, Siwei S, Li C, Junjie J, Suzhen L, Xianzhang S, Chunqin W, Lizhi L. 2019. Protective role of dryland rearing on netting floors against mortality through gut microbiota-associated immune performance in Shaoxing ducks. Poult Sci 98 (10): 4530–4538. DOI: 10.3382/ps/pez268
Zhu C, Song W, Tao Z, Liu H, Zhang S, Xu W, Li H. 2020. Analysis of microbial diversity and composition in small intestine during different development times in ducks. Poult Sci 99 (2): 1096-1106. DOI: 10.1016/j.psj.2019.12.030.