Growth and production of secondary metabolites in the callus of Bima Brebes shallot varieties

##plugins.themes.bootstrap3.article.main##

NOOR AINI HABIBAH
ARI YUNIASTUTI
R. SUSANTI
LISDIANA
DEWI MUSTIKANINGTYAS
ANANDA LUTFIAH
SISKA NA'ILIL AULIA
TAQQIYA RABBANI

Abstract

Abstract. Habibah NA, Yuniastuti A, Susanti R, Lisdiana, Mustikaningtyas D, Lutfiah A, Aulia SN, Rabbani T. 2024. Growth and production of secondary metabolites in the callus of Bima Brebes shallot varieties. Biodiversitas 25: 2811-2820. Shallots contain bioactive compounds that can be produced through callus culture. This study investigates the effects of growth regulators 2,4-D, picloram, and kinetin on the growth and production of secondary metabolites in shallot bulb callus. A Complete Randomized Design (CRD) with two factors was used in the experiment. The first factor was the concentrations of 2,4-D (0, 1, 2, and 3 ppm) and picloram (0, 1, 2, and 3 ppm). The second factor was kinetin concentrations (0, 0.25, and 0.5 ppm). The parameters evaluated were callus fresh weight, callus dry weight, percentage of callus formation, callus induction time, callus morphology, phytochemical components, and antioxidant activity. The optimal growth medium is crucial for developing growth curves. Bioactive compounds were identified using Liquid Chromatography-Mass Spectrometry (LC-MS). Results indicated that explants grown on a medium combining picloram and kinetin exhibited better growth than those grown on a 2,4-D and kinetin combination. The callus colors varied from white to yellowish-white, yellow, and brownish-yellow, with a crumbly texture. Callus from all treatments contained bioactive compounds indicated by antioxidant activity, flavonoid content, and total phenolics. LC-MS analysis identified 87 types of secondary metabolite compounds. Callus treated with picloram and kinetin consistently produced flavonoids and phenolics and exhibited antioxidant activity.

##plugins.themes.bootstrap3.article.details##

References
Bhatia S. 2015. Plant Tissue Culture. Modern Applications of Plant Biotechnology in Pharmaceutical Sciences. Academic Press, London.
Boukeria S, Kadi K, Kalleb R, Benbott A, Bendjedou D, Yahia A. 2016. Phytochemical and physicochemical characterization of Allium sativum l. and Allium cepa l. essential oil. J Mater Environ Sci 7(7): 2362-2368.
Di DW, Wu L, Zhang L, An CW, Zhang TZ, Luo P, Gao HH, Kriechbaumer V, Guo GQ. 2016. Functional roles of Arabidopsis CKRC2/YUCCA8 gene and the involvement of PIF4 in the regulation of auxin biosynthesis by cytokinin. Sci Rep 6:36866. DOI: 10.1038/srep36866.
Dar SA, Nawchoo IA, Tyub S, Kamili AN. 2021. Effect of plant growth regulators on in vitro induction and maintenance of callus from leaf and root explants of Atropa acuminata Royal ex Lindl. Biotechnol Rep (Amst) 32: e00688. DOI:10.1016/j.btre.2021.e00688
Farag MA, Ali SE, Hodaya RH, El-Seedi HR, Sultani HN, Laub A, Eissa TF, Abou-Zaid FOF, Wessjohann LA. 2017. Phytochemical profiles and antimicrobial activities of Allium cepa red cv. and A. sativum subjected to different drying methods: a comparative MS-based metabolomics. Molecules 22 (5): 761. DOI:10.3390/molecules22050761
Farhadi N, Panahandeh J, Azar AM, Salte SA. 2017. Effects of explant type, growth regulators and light intensity on callus induction and plant regeneration in four ecotypes of Persian shallot (Allium hirtifolium). Sci Hortic 218: 80-86. DOI: 10.1016/j.scienta.2016.11.056
Guo G, Jeong BR. 2021. Explant, medium, and plant growth regulator (PGR) affect induction and proliferation of callus in Abies koreana. Forests 12(10):1388. DOI: 10.3390/f12101388
Habibah NA, Yuniastuti A, Susanti R, Lisdiana, Mustikanintyas D, Lutfiah A, Aulia SN, Rabbani T. Identification of secondary metabolite compounds in methanol extract of Allium cepa var. Bima Brebes and its bioactivity. Unpublished.
Habibah NA, Moeljopawiro S, Dewi K, Indrianto A. 2016. Flavonoid production in callus cultures from mesocarp of Stelechocarpus burahol. Biosaintifika: Journal of Biology & Biology Education 8(2): 214-221. DOI: 10.15294/biosaintifika.v8i2.6632
Habibah NA, Nugrahaningsih WH, Safitri, Musafa F, Wijawati N. 2021. Profile of flavonoids and antioxidant activity in cell suspension culture of Elaocarpus grandiflorus. Biosaintifika: Journal of Biology & Biology Education 13(3): 328-335. DOI: 10.15294/biosaintifika.v13i3.32715
Habibah NA, Nugrahaningsih WH, Musafa F, Rostriana Y, Mukhtar K, Wijawati N, Anggraito YU. 2020. Bioactive compounds from callus culture of Elaeocarpus grandiflorus. IOP Conf Ser J Phys 1567(032055). DOI: 10.1088/1742-6596/1567/3/032055.
Habibah NA, Nugrahaningsih WH, Anggraito YU, Mukhtar K, Wijayanti N, Mustafa F, Rostriana Y. 2019. Effect of growth regulators on cell growth and flavonoid production in cell culture of Elaecarpus grandiflorus. IOP Conf Ser Earth Environ Sci 391: 012061. DOI: 10.1088/1755-1315/391/1/012061
Habibah NA, Nugrahaningsih WH, Anggraito YU, Saitri, S, Mustafa F, Wijayanti N. 2023. Influence of plant growth regulators on the phenolic composition of Elaeocarpus grandiflorus j.e. smith (Elaeocarpaceae) cell culture. Pak J Bot 55(5): 1623-1631. DOI: 10.30848/PJB2023-5(17)
Hunaish AA, Almasoody MM. 2020. Induction of callus on various explants of arugula plant (Eruca sativa Mill.) using the growth regulators (2,4-d and kinetin. Plant Arch 20(2): 1654-1660.
Indrasari SD, Arofah D, Kristamtini K, Sudarmaji S, Handoko DD. 2021. Volatile compounds profile of some Indonesian shallot varieties. IOP Conf Ser Earth Environ Sci 746 (012009): 1-9. DOI: 10.1088/1755-1315/746/1/012009
Jamshidikia F, Wibowo JP, Mustofa E, Masumi R, Salehifard-Jouneghani A, Abolhasanzadeh Z, Lorigooini Z. 2020. Battle between plants as antioxidants with free radicals in the human body. J Herbmed Pharmacol 9(3): 191-199. DOI:10.34172/jhp.2020.25
Jiang F, Feng Z, Liu H, Zhu J. 2015. Involvement of plant stem cells or stem cell-like cells in dedifferentiation. Front Plant Sci 6: 1-6. DOI: 10.3389/fpls.2015.01028
Ko EY, Nile SH, Jung YS, Keum YS. 2018. Antioxidant and antiplatelet potential of different methanol fractions and flavonols extracted from onion (Allium cepa L.). Biotech 8(3):155. DOI: 10.1007/s13205-018-1184-4.
Krzysztoforska K, Mirowska-Guzel D, Widy-Tyszkiewicz E. 2019. Pharmacological effects of protocatechuic acid and its therapeutic potential in neurodegenerative diseases: review on the basis of in vitro and in vivo studies in rodents and humans. Nutr Neurosci 22: 72-82. DOI:10.1080/1028415X.2017.1354543
Lee HJ, Suh HJ, Han SH, Hong J, Choi HS. 2016. Optimization of extraction of cycloalliin from garlic (Allium sativum L.) by using principal components analysis. Prev Nutr Food Sci 21(2): 138-146. DOI: 10.3746/pnf.2016.21.2.138
Liguori L, Califano R, Albanese D, Raimo F, Crescitelli A, Di Matteo M. 2017. Chemical composition and antioxidant properties of five white onion (Allium cepa L.) landraces. J Food Qual 2017: 6873651. DOI: 10.1155/2017/6873651
Liu K, Luo M, Wei S. 2019. The bioprotective effects of polyphenols on metabolic syn-drome against oxidative stress: evidence and perspectives. Oxid Med Cell Longev. 2019: e6713194. DOI:10.1155/2019/6713194
Liu J, Yang J, Jiang C, Zhou J, Zhao Y, Huang L. 2021. Volatile organic compound and endogenous phytohormone characteristics during callus browning in aquilaria sinensis. Ind Crops Prod 168: 113605. DOI: 10.1016/j.indcrop.2021.113605.
Moldovan C, Frumuzachi O, Babot? M, Barros L, Mocan A, Carradori S, Cri?an G. 2022. Therapeutic uses and pharmacological properties of shallot (Allium ascalonicum): a systematic review. Front Nutr 9:903686. DOI: 10.3389/fnut.2022.903686
Nadeem M, Ubaid N, Qureshi TH, Munir M, Mehmood A. 2018. Effect of ultrasound and chemical treatment on total phenol, flavonoids and antioxidant properties on carrot-grape juice blend during storage. Ultrason Sonochem 45: 1-6. DOI:10.1016/j.ultsonch.2018.02.034
Nurcahyo H, Sumiwi SA, Halimah E, Wilar G. 2022. Secondary metabolitm determination from Brebes shallot’s ethanol extract and its ethyl acetate fraction Allium ascalonicum L. J Adv Pharm Educ Res 12(1):70-73. DOI: 10.51847/NfNMFJB9ac
Pasternak TP, Steinmacher D. 2024. Plant growth regulation in cell and tissue culture in vitro. Plants (Basel) 13(2): 327. DOI:10.3390/plants13020327
Rodriguez J, Manzano C, Moreno-Risueno MA. 2014. Post-embryonic organogenesis and plant regeneration from tissues: two sides of the same coin. Front Plant Sci 5: 1-11. DOI: 10.3389/fpls.2014.00219
Rosa YBCJ, Aizza LBC, Bello CCM, Dornellas MC. 2013. The PmNAC1 gene is induced by auxin and expressed in differentiating vascular cells in callus cultures of Passi?ora. Plant Cell Tissue Organ Cult 115(2): 275-283. DOI: 10.1007/s11240-013-0360-9
Ruhee RT, Roberts LA, Ma S, Suzuki K. 2020. Organosulfur compounds: a review of their anti-inflammatory effects in human health. Front Nutr 7(64): 1-11. DOI: 10.3389/fnut.2020.00064
Saikin M, Shrivastava K, Singh SS. 2013. Effect of culture media and growth hormones on callus induction in Aquilaria malaccensis lam., a medicinally and commercially important tree species of North East India. Asian J Biol Sci 6(2): 96-105. DOI: 10.3923/ajbs.2013.96.105
Salvaña FR. 2019. Morphological and histochemical characterization of callus from leaf explant of Tagetes lucida Cav. (Asteraceae). J New Biol Rep 8(3): 172-178
Santos-Buelga C, González-Paramás AM, Oludemi T, Ayuda-Durán B, González-Manzano S. 2019. Plant phenolics as functional food ingredients. Adv Food Nutr Res 90: 183-257. DOI: 10.1016/bs.afnr.2019.02.012
Shahrajabian MH, SunW, Cheng Q.2020. Chinese onion, and shallot, originated in Asia, medicinal plants for healthy daily recipes. Not Sci Biol 12(2):197-207. DOI: 10.15835/nsb12210725
Singh SK, Joshi T, Kanojiya S, Tripathi V, Mishra DK 2014. Callus culture and in vitro biosynthesis of echitamine from Alstonia scholaris (L.) R. Br. Plant Cell Tissue Organ Cult 120: 367-372. DOI 10.1007/s11240-014-0579-0.
Šmeringai J, Schrumpfová PP, Pernisová M. 2023. Cytokinins–regulators of de novo shoot organogenesis. Front Plant Sci. 14:1239133. DOI: 10.3389/fpls.2023.1239133.
Twaij BM, Hasan MN. 2022. Bioactive secondary metabolites from plant sources: types, synthesis, and their therapeutic uses. International J Plant Biol 13(1):4-14. DOI: 10.3390/ijpb13010003
Vats S, Kamal R. 2014. Flavonoids and antioxidant activity of different plant parts and callus culture of Cassia occidentalis L. Curr Bioact Compd 10(3): 201-206. DOI: 10.2174/1573407210666140917004952
Veraplakorn V. 2016. Micropropagation and callus induction of Lantana camara L. - A medicinal plant. Agr Nat Resour 50(5): 338-344. DOI: 10.1016/j.anres.2016.12.002
Yan Z, Liu X, Ljung K, Li S, Zhao W, Yang F, Wang M, Tao Y. 2017. Type B response regulators act as central integrators in transcriptional control of the auxin biosynthesis enzyme TAA1. Plant Physiol 175:1438-1454. DOI: 10.1104/pp.17.00878
Yoshimoto N, Asano T, Kisanuki A, Kanno C, Asanuma M, Yamazaki M, Fujii I, Saito K. 2022. The ability of callus tissues induced from three Allium plants to accumulate health-beneficial natural products, S-alk(en)ylcysteine sulfoxides J Nat Med 76(4):8 03-810. DOI:10.1007/s11418-022-01631-4
Yoshimoto N, Saito K. 2019. S-Alk(en)ylcysteine sulfoxides in the genus Allium; proposed biosynthesis, chemical conversion, and bioactivities. J Exp Bot 70:4123-4137. DOI: 10.1093/ jxb/ erz243
Zhao L, Gao L, Wang H, Chen X, Wang Y, Yang H, Wei C, Wan X, Xia T. 2013. The R2R3- MYB, bHLH, WD40, and related transcription factors in flavonoid biosynthesis. Funct Integr Genomics 13(1): 75-98. DOI: 10.1007/s10142-012-0301-4
Zhao X, Lin F, Li H, Li H, Wu D, Geng F, Ma W, Wang Y, Miao B, Gan R. 2021. Recent advances in bioactive compounds, health functions, and safety concerns of onion (Allium cepa L.). Front Nutr 8 (669805): 1-23. DOI: 10.3389/fnut.2021.669805
Zhao S, Sun H, Gao Y, Sui N, Wang B. 2011. Growth regulator-induced betacyanin accumulation and dopa-4,5-dioxygenase (DODA) gene expression in euhalophyte Suaeda salsa calli. In Vitro Cells Dev Biol Plant 47: 391-398. DOI: 10.1007/s11627-011-9339-6
Zou Y, Lu Y, Wei D. 2004. Antioxidant activity of flavonoid-rich extract of Hypericum perforatum L in vitro. J Agric Food Chem 52: 5032-5039. DOI: 10.1021/jf049571r.

Most read articles by the same author(s)