Effects of production system on the gut microbiota diversity and IgA distribution of Kampong chickens, Indonesia

##plugins.themes.bootstrap3.article.main##

R. SUSANTI
WULAN CHRISTIJANTI

Abstract

Abstract. Susanti R, Christijanti W. 2022. Effects of production system on the gut microbiota diversity and IgA distribution of Kampong chickens. Biodiversitas 23: 1082-1090. Native chickens (Kampong chickens) are poultry in Indonesia that is raised using a traditional production system. This study aimed to analyze the differences of the Kampong chicken production system (extensive/E and semi-intensive/SI) on the diversity and abundance of gut microbiota and the distribution of IgA. Each sample of Kampong chickens was slaughtered, then their thoracic and abdominal cavities were dissected, and their intestines were collected. Furthermore, the intestinal tissue was processed to make histological preparations for immunohistochemical analysis of IgA. Gut contents of 25 g were taken aseptically and used for next-generation sequencing (NGS) and GC-MS analysis. The results showed 12 bacterial phyla in the intestines of SI and E chicken. E chickens had a higher abundance and diversity of microbiota than the SI chickens. The phylum Firmicutes dominated the E and SI chickens' gut microbiota (>50%). SI chickens have a higher Firmicutes/Bacteroidetes ratio than the E chickens. The SIgA distribution showed an IRS score of 4 (moderate), both in E and SI chickens. It was concluded that the production system affects the intestinal microbiota's abundance and diversity but not on the intestine IgA of Kampong Chickens. This study highlights that based on the Firmicutes/Bacteroidetes ratio, the semi-intensive system is more suitable for Kampong chicken meat and eggs than the extensive system.

##plugins.themes.bootstrap3.article.details##

References
Apajalahti J, Kettunen A, Graham H. 2004. Characteristics of the gastrointestinal microbial communities, with special reference to the chicken. Worlds Poult Sci J 60:223-232. DOI:10.1079/WPS200415.
Bailey MT, Dowd SE, Parry NM, Galley JD, Schauer DB, Lyte M. 2010. Stressor exposure disrupts commensal microbial populations in the intestines and leads to increased colonization by Citrobacter rodentium. Infect Immun 78(4):1509-1519. DOI:10.1128/IAI.00862-09.
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. 2016. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 13(7): 581-583. DOI:10.1038/nmeth.3869
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R. 2010. QIIME allows analysis of high¬-throughput community sequencing data. Nat Methods. 7(5):335-336. DOI: 10.1038/nmeth.f.303.QIIME
Caromaldonado A, Wang R, Nichols AG, Kuraoka M, Milasta S, Sun LD, Gavin AL, Abel ED, Kelsoe G, Green DR. 2014. Metabolic reprogramming is required for antibody production that is suppressed in anergic but exaggerated in chronically BAFF-exposed B cells. J Immunol 192:3626-3636
Chao A. 1984. Nonparametric Estimation of the Number of Classes in a Population. Scand Stat Theory Appl. 11(4):265
Dennis KL, Wang Y, Blatner NR, Wang S, Saadalla A, Trudeau E, Roers A, Weaver CT, Lee JJ, Gilbert JA, Chang EB, Khazaie K. 2013. Adenomatous polyps are driven by microbe-¬instigated focal inflammation and are controlled by IL¬10¬ producing T cells. Cancer Res. 73(19):5905-5913. DOI:10.1158/0008¬ 5472.CAN¬13¬1511
DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL. 2006. Greengenes, a chimera¬checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 72(7):5069-5072. DOI:10.1128/AEM.03006¬05
Eeckhaut V, Wang J, Van Parys A, Haesebrouck F, Joossens M, Falony G, Raes J, Ducatelle R, Van Immerseel F. 2016. The probiotic Butyricicoccus pullicaecorum reduces feed conversion and protects from potentially harmful intestinal microorganisms and necrotic enteritis in broilers. Front Microbiol 7: 1416
Esquivel-Elizondo S, Ilhan ZE, Garcia-Pena EI, Krajmalnik-Brown R. 2017. Insights into butyrate production in a controlled fermentation system via gene predictions. mSystems 2: e00051-17
Fanatico AC, Pillai PB, Emmert JL, Owens CM. 2007. Meat quality of slow- and fast-growing chicken genotypes fed low-nutrient or standard diets and raised indoors or with outdoor access. Poult Sci. 86(10):2245-2255
FAO. 2008. Local chicken genetic resources and production systems in Indonesia. Prepared by Muladno. GCP/RAS/228/GER Working Paper No. 6. Rome.
Fedchenko N, Reifenrath J. 2014. Different approaches for interpretation and reporting of immunohistochemistry analysis results in the bone tissue - a review. Diagn Pathol 9:221. DOI: 10.1186/s13000-014-0221-9.
Flint HJ, Duncan SH, Scott KP, Louis P. 2015. Links between diet, gut microbiota composition and gut metabolism. Proc Nutr Soc 74:13-22
Fransen F, Zagato E, Mazzini E, Fosso B, Manzari C, El Aidy S, Chiavelli A, D’Erchia AM, Sethi MK, Pabst O, Marzano M, Moretti S, Romani L, Penna G, Pesole G, Rescigno M. 2015. BALB/c and C57BL/6 mice difer in polyreactive IgA abundance, which impacts the generation of antigen-specifc IgA and microbiota diversity. Immunity 43:527-540
Guardia S, Konsak B, Combes S, Levenez F, Cauquil L, Guillot JF, Moreau-Vauzelle C, Lessire M, Juin H, Gabriel I. 2011. Effects of stocking density on the growth performance and digestive microbiota of broiler chickens. Poult Sci 90:1878-1889. DOI:10.3382/ps.2010-01311
Holm JB, Humphrys MS, Robinson CK, Settles ML, Ott S, Fu L, Yang H, Gajer P, He X, McComb E, Gravitt PE, Ghanem KG, Brotman RM, Ravel J. 2019. Ultrahigh-¬throughput multiplexing and sequencing of >500¬base¬pair amplicon regions on the Illumina HiSeq 2500 platform. mSystems 4(1):1-10. DOI:10.1128/msystems.00029¬19
Hunter JD. 2007. Matplotlib: A 2D graphics environment. Comput Sci Eng. 9(3):99-104. DOI:10.1109/MCSE.2007.55.
Jumpertz R, Le DS, Turnbaugh PJ, Trinidad C, Bogardus C, Gordon JI, Krakoff J. 2011. Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am J Clin Nutr 94(1):58-65. DOI:10.3945/ajcn.110. 010132
Kers JG, Velkers FC, Fischer EAJ, Hermes GDA, Stegeman JA, Smidt H. 2018. Host and environmental factors affecting the intestinal microbiota in chickens. Front Microbiol. 9:235. DOI: 10.3389/fmicb.2018.00235
Khosravi A, Mazmanian SK. 2013. Disruption of the gut microbiome as a risk factor for microbial infections. Curr Opin Microbiol16(2):221-7. DOI: 10.1016/j.mib.2013.03.009.
Kim M, Qie Y, Park J, Chang HK. 2016. Gut microbial metabolites fuel host antibody responses. Cell Host Microbe 20:202-214
Kubinak JL, Round JL. 2016. Do antibodies select a healthy microbiota? Nat Rev Immunol 16:767-774
Laukens D, Brinkman BM, Raes J, De Vos M, Vandenabeele P. 2016. Heterogeneity of the gut microbiome in mice: guidelines for optimizing experimental design. FEMS Microbiol Rev 40(1):117-132. DOI:10.1093/femsre/fuv036
Levy M, Thaiss CA, Elinav E. 2016. Metabolites: messengers between the microbiota and the immune system. Gene Dev 30:1589-1597
Levy M, Blacher E, Elinav E. 2017. Microbiome, metabolites, and host immunity. Curr Opin Microbiol 35:8-15
Ludvigsen J, Svihus B, Rudi K. 2016. Rearing room affects the non-dominant chicken cecum microbiota, while diet affects the dominant microbiota. Front Vet Sci 3:16. DOI: 10.3389/fvets.2016.00016
Magurran AE. 2004. Measuring biological diversity. Oxford: Blackwell.
McDonald D, Price MN, Goodrich J, Nawrocki EP, Desantis TZ, Probst A, Andersen GL, Knight R, Hugenholtz P. 2012. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. Microb Ecol 6(3):610-618. DOI:10.1038/ismej.2011.139
Medvecky M, Cejkova D, Polansky O, Karasova D, Kubasova T, Cizek A, Rychlik I. 2018. Whole genome sequencing and function prediction of 133 gut anaerobes isolated from chicken caecum in pure cultures. BMC Genomic 19:561
Meyer B, Bessei W, Vahjen W, Zentek J, Harlander-Matauschek A. 2012. Dietary inclusion of feathers affects intestinal microbiota and microbial metabolites in growing Leghorn-type chickens. Poult Sci. 91:1506-1513. DOI. 10.3382/ps.2011-01786
McCafferty J, Muhlbauer M, Gharaibeh RZ, Arthur JC, Perez-Chanona E, Sha W, Jobin C, Fodor AA. 2013. Stochastic changes over time and not founder effects drive cage effects in microbial community assembly in a mouse model. Microb Ecol 7:2116-2125. DOI: 10.1038/ismej.2013.106
Oakley BB, Lillehoj HS, Kogut MH, Kim WK, Maurer JJ, Pedroso A, Lee MD, Collett SR, Johnson TJ, Cox NA. 2014. The chicken gastrointestinal microbiome. FEMS Microbiol Lett 360(2):100-12. DOI:10.1111/1574-6968.12608
Org E, Parks BW, Joo JW, Emert B, Schwartzman W, Kang EY, Mehrabian M, Pan C, Knight R, Gunsalus R, Drake TA, Eskin E, Lusis AJ. 2015. Genetic and environmental control of host-gut microbiota interactions. Genome Res. 25:1558-1569. DOI: 10.1101/gr.194118.115
Palm NW, de Zoete MR, Cullen TW, Barry NA, Stefanowski J, Hao L, Degnan PH, Hu J, Peter I, Zhang W, Ruggiero E, Cho JH, Goodman AL, Flavell RA. 2014. Immunoglobulin A coating identifes colitogenic bacteria in inflammatory bowel disease. Cell 158:1000-1010
Parnell JA, Reimer RA. 2012. Prebiotic fiber modulation of the gut microbiota improves risk factors for obesity and the metabolic syndrome. Gut Microbes 3(1):29-34
Pielou EC. 1966. The measurement of diversity in different types of biological collections. J Theor Biol. 13:131-144. DOI:10.1016/0022¬5193(66)90013¬0
Stanley D, Geier MS, Chen H, Hughes RJ, Moore RJ. 2015. Comparison of fecal and cecal microbiotas reveals qualitative similarities but quantitative differences. BMC Microbiol 15:51
Sergeant MJ, Constantinidou C, Cogan TA, Bedford MR, Penn CW, Pallen MJ. 2014. extensive microbial and functional diversity within the chicken cecal microbiome. PLoS One 9(3): e91941. DOI: 10.1371/journal.pone.0091941
Simpson EH. 1949. Measurement of Diversity. Nature 163(1):688. DOI:10.1038/163688a0.
Shannon CE, Weaver W. 1949. The Mathematical Theory of Communication. Champaign, IL.
Susanti R, Christijanti W, Yuniastuti A. 2021. Immunohistochemical distribution of Immunoglobulin-A in relation to the intestinal microbiota of Cairina moschata (Muscovy) duck. J Phys Conf Ser 1918: 052004. DOI:10.1088/1742-6596/1918/5/052004
Susanti R, Yuniastuti A, Sasi FA, Dafip M. 2020. Metagenomic analysis of intestinal microbiota in geese from different farming systems in Gunungpati, Semarang. Indones J Biotechnol 25(2): 76?83. DOI: 10.22146/ijbiotech.53936
Thaiss CA, Zmora N, Levy M, Elinav E. 2016a. The microbiome and innate immunity. Nature 535(7610):65-74. DOU: 10.1038/nature18847.
Thaiss CA, Itav S, Rothschild D, Meijer MT, Levy M, Moresi C, Dohnalová L, Braverman S, Rozin S, Malitsky S, Dori-Bachash M, Kuperman Y, Biton I, Gertler A, Harmelin A, Shapiro H, Halpern Z, Aharoni A, Segal E, Elinav E. 2016b. Persistent microbiome alterations modulate the rate of post-dieting weight regain. Nature 540: 544-551. DOI: 10.1038/nature20796
Thiennimitr P, Winter SE, Winter MG, Xavier MN, Tolstikov V, Huseby DL, Sterzenbach T, Tsolis RM, Roth JR, Baumler AJ. 2011. Intestinal inflammation allows Salmonella to use ethanolamine to compete with the microbiota. Proc Natl Acad Sci USA 108: 17480-17485
Torok VA, Hughes RJ, Mikkelsen LL, Perez-Maldonado R, Balding K, MacAlpine R, Percy NJ, Ophel-Keller K. 2011. Identification and characterization of potential performance-related gut microbiotas in broiler chickens across various feeding trials. Appl Environ Microbiol 77(17):5868-78. DOI:10.1128/AEM.00165-11
Trompette A, Gollwitzer ES, Yadava K, Sichelstiel AK, Sprenger N, Ngom-Bru C, Blanchard C, Junt T, Nicod LP, Harris NL, Marsland BJ. 2014. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med 20(2):159-66
Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. 2006. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444(7122):1027-31.
Vital M, Karch A, Pieper DH. 2017. Colonic butyrate-producing communities in humans: an overview using omics data. mSystems 2: e00130-17
Vrieze A, Holleman F, Zoetendal EG, de Vos WM, Hoekstra JB, Nieuwdorp M. 2010. The environment within: how gut microbiota may influence metabolism and body composition. Diabetologia 53(4):606-613. DOI:10.1007/s00125-010-1662-7.
Videnska P, Sedlar K, Lukac M, Faldynova M, Gerzova L, Cejkova D, Sisak F, Rychlik I. 2014. Succession and replacement of bacterial populations in the caecum of egg laying hens over their whole life. PLoS One 9(12): e115142. DOI:10.1371/journal.pone.0115142
Xu Y, Yang H, Zhang L, Su Y, Shi D, Xiao H, Tian Y. 2016. High-throughput sequencing technology to reveal the composition and function of cecal microbiota in Dagu chicken. BMC Microbiol 16:259. DOI: 10.1186/s12866-016-0877-2
Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W, Schleifer KH, Whitman WB, Euzéby J, Amann R, Rosselló¬Móra R. 2014. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 12(9):635-645. DOI:10.1038/nrmicro3330
Zhao L, Wang G, Siegel P, He C, Wang H, Zhao W, Zhai Z, Tian F, Zhao J, Zhang H, Sun Z, Chen W, Zhang Y, Meng H. 2013. Quantitative genetic background of the host influences gut microbiomes in chickens. Sci Rep 3:1163. DOI: 10.1038/srep01163

Most read articles by the same author(s)