Efficacy of bio-pesticide Lecanicillium lecanii against soybean-sucking bugs Riptortus linearis during field application

##plugins.themes.bootstrap3.article.main##

YAYUK MULYATI
SITI ZUBAIDAH
YUSMANI PRAYOGO

Abstract

Abstract. Mulyati Y, Zubaidah S, Prayogo Y. 2023. Efficacy of bio-pesticide Lecanicillium lecanii against soybean-sucking bugs Riptortus linearis during field application. Biodiversitas 24: 4829-4836. This study aimed to determine the effect of application time and surfactants on the efficacy of Lecanicillium lecanii strain Probolinggo in controlling the soybean pod-sucking bug Riptortus linearis in a field test. The study was conducted in a randomized block design consisting of two treatments, namely time of application (7 am, 10 am, 1 pm, and 4 pm) and type of surfactant (alkyl glycerol phthalate and alkylaryl polyglycol ether). Application time at 4 pm showed 93% highest mortality of R. linearis than the other treatments, with the lowest number of punctures (86 punctures) and the highest soybean dry weight (11.38 g), which were not significantly different from the application time of 10 am. The efficacy of L. lecanii increased by 74.3% after adding alkylaryl polyglycol ether. The efficacy of L. lecanii with alkyl glycerol phthalate was not significantly different from the control. In the parameters of the number of seed punctures and dry weight of soybeans, the surfactant treatment gave similar results to the control. The results showed that in the field test, the highest efficacy of L. lecanii against R. linearis occurred at 4 pm with alkil aril polyglycol ether surfactant.

##plugins.themes.bootstrap3.article.details##

References
Acheampong MA, Coombes CA, Moore SD, Hill MP. 2020. Temperature tolerance and humidity requirements of select entomopathogenic fungal isolates for future use in citrus IPM programmes. Journal of Invertebrate Pathology. DOI: 10.1016/j.jip.2020.107436.
Al-Ani LKT. 2019. Entomopathogenic fungi in IP Landscape. Intellectual property issues in microbiology. DOI: 10.1007/978-981-13-7466-112.
Alhadidi. 2023. A review of entomopathogenic fungi of Iraq. Iraqi Journal of Science 64(1): 91-110. DOI: 10.24996/ijs.2023.64.1.10.
Altinok HH, Altinok MA, Koca AS. 2019. Modes of action of entomopathogenic fungi. Natural Sciences, 8(16): 117-124.
Arnosti A, Junior ID, Conceschi MR, D’Alessandro CP, Travaglini RV, Mathias MIC. 2019. Interactions of adjuvants on adhesion and germination of Isaria fumosorosea on adults of Diaphorina citri. Scientia Agricola 76 (6): 487-493. DOI: 10.1590/1678-992X-2017-0240.
Astuti P, Fitriana Y, Wibowo L, Susilo FX. 2020. Pertumbuhan dan Patogenitas beberapa Isolat Mutan Metarhizium anisopliae terhadap hama Pengisap (Riptortus linearis). J. Agotek Tropika 8(2): 319-325.
Atta B, Rizwan M, Sabir AM, Gogi MD, Farooq MA, Batta YA. 2019. Efficacy of Entomopathogenic fungi against brown planthopper Nilaparvata lugens (Stal) (Homoptera: Delphacidae) under controlled conditions. Gesunde Pflanzen 72(2): 101-112. DOI: 10.1007/s10343-019-00490-6.
Badiaraja PH, Zubaidah S, Kuswantoro H. 2021. Maternal effect of agronomic and morphological characters on cluster structure of F3 soybean lines. Biodiversitas 22: 969-982. DOI: 10.13057/biodiv/d220253.
Baroh, I. Windiana, L., Ariyanti, I.S. 2022. Analysis of Soybean Consumption in Indonesia. Agriecobis. 5(2): 131-137. DOI: 10.22219/agriecobis.v5i02.16102.
Borisade OA, Magan N. 2015. Resilience and relative virulence of strains of entomopathogenic fungi under interactions of abiotic stress. African Journal of Microbiology Research 9(14): 988-1000. DOI: 10.5897/AJMR2015.7416.
Chavan BP, Kadam JR. 2009. Effect of combination of adjuvants on liquid formulations of Verticillium lecanii (Zimmermann) Viegas and their efficacy. J. Biol. Control 23(1): 73-77. DOI: 10.18311/jbc/2009/3619.
Dinkwar and Ashwini, 2022. Entomopathogenic Fungi: Need of Sustainable Agriculture. Biotica Research Today, 4(10):657-661.
Fargues J, Luz C, 2000. Effects of fluctuating moisture and temperature regimes on the infection potential of Beauveria bassiana for Rhodnius prolixus. Journal of Invertebrate Pathology 75: 202–211. DOI: 10.1006/jipa.1999.4923.
Ferreira JM, Soares FES. 2023. Entomopathogenic fungi hydrolytic enzymes: A new approach to biocontrol? Journal of Natural Pesticide Research 3: 1-6. DOI: 10.1016/j.napere.2023.100020.
Herlina L, Istiaji B, Koswanudin D, Sutoro. 2021. Resistant level of soybean germplasm against pod sucking bugs (Riptortus spp.). Indonesian Journal of Agricultural Science 22(1): 39-57.
Herlinda S, Octariati N, Suwandi S, Hasbi. 2020. Exploring entomopathogenic fungi from South Sumatra (Indonesia) soil and their pathogenicity against a new invasive maize pest, Spodoptera frugiperda. Biodiversitas 21: 2955-2965. DOI: 10.13057/biodiv/d210711.
Kaaya GP, Samish M, Hedimbi M, Gindin G, Glazer I. 2011. Control of tick populations by spraying Metarhizium anisopliae conidia on cattle under field conditions. Exp Appl Acarol 55: 273-281. DOI:10.1007/s10493-011-9471-3.
Kale PR, Pawar DB, Mane SA. 2021. Bioefficacy of different miticides and botanicals against field abundance attacking host mite, Tetranychus cinnabarinus (Boisd) on okra. International journal of current microbiology and applied sciences 10(6): 257-266. DOI: 10.20546/ijcmas.2021.1006.027.
Kaiser D, Bacher S, Mene-Saffrane L, Grabenweger G. 2018. Efficacy of natural substances to protect Beauveria bassiana conidia from UV radiation. Pest Management Science 75: 556 – 563. DOI: 10.1002/ps.5209.
Mantzoukas S, Kitsiou F, Natsiopoulos D, Eliopoulos PA. 2022. Entomopathogenic: Interactions and Applications. Encyclopedia 2: 646–656. DOI: 10.3390/encyclopedia2020044.
Jaronski ST. 2010. Ecological factors in the inundative use of fungal entomopahogens. BioControl 55: 159 – 185. DOI: 10.1007/s10526-009-9248-3.
Lacey LA, Kaya HK. 2007. Field Manual of Techniques in Invertebrate Pathology. In Grasshoppers and Locusts; Springer: Dordrecht, The Netherlands.
Li W, Gao Y, Hu Y, Chen J, Zhang J, Shi S. 2021. Field cage assessment of feeding damage by Riptortus pedestris on soybeans in China. Insects 12 (3): 1-12. DOI:10.3390/insects12030255.
Mulyati Y, Himawan T, Arumingtyas EL, Abadi AL. 2015. The role of chitinase in the pathogenicity of Lecanicillium lecanii based in genetic – enzymatic analysis and bioassay against nymph pod sucking bug Riptortus linearis. International Journal of Research and Developmnet in Pharmacy and Life Sciences. 4(5): 1743-1749.
Najafabadi MY, Rajcan I, Eskandari M. 2022. Optimizing genomic selection in soybean: an important improvement in agricultural genomics. Heliyon 8. DOI: 10.1016/j.heliyon. 2022.e11873.
Nguyen HQ, Quyen DT, Nguyen SLT, Vu VH. 2015. An extracellular antifungal chitinase from Lecanicillium lecanii: purification, properties, and application in biocontrol against plant pathogenic fungi. Turkish Journal of Biology 39(1): 6-14. DOI: 10.3906/biy-1402-28.
Nithya PR, Rani R OP. 2019. Enriched bioformulations of Lecanicillium lecanii (Zimmermann) Zare and Gams against sucking pests of yard long bean, Vigna ungiculata L. Walp sesquipedalis. Journal of Entomological Research 43(4): 445-450. DOI: 10.5958/0974-4576.2019.00078.1.
Oliveira DGPD, Lopes RB, Rezende JM, Delalibera IJr. 2018. Increased tolerance of Beauveria bassiana and Metarhizium anisopliae conidia to high temperature provided by oil-based formulations. Journal of Invertebrate Pathology 151-157. DOI: 10.1016/j.jip.2017.11.012.
Parrini S, Aquilani C, Pugliese C, Bozzi R, Sirtori F. 2023. Soybean Replacement by Alternative Protein Sources in Pig Nutrition and Its Effect on Meat Quality. Animals 13 (494): 1-30. DOI: 10.3390/ani13030494.
Paixão FRS, Muniz ER, Barreto LP, Bernardo CC, Mascarin GM, Luz C, Fernandes ÉKK. 2017. Increased heat tolerance afforded by oil-based conidial formulations of Metarhizium anisopliae and M. robertsii. Biocontrol Science and Technology. DOI: 10.1080/09583157.2017.1281380
Proyogo Y. 2009. Kajian Cendawan Entomopatogen Lecanicillium lecanii (Zimm.) (Viegas) Zare & Gams Untuk menekan Perkembangan Telur Hama Pengisap Polong Kedelai Riptortus linearis (F.) (Hemiptera: Alydidae). [Dissertation]. Institut Pertanian Bogor.[Indonesian]
Puza V and Tarasco E. 2023. Interaction between entomopathogenic fungi and entomopathogenic nematodes. Microorganisms 11 (163): 1-14. DOI: 10.3390/microorganisms11010163.
Ramayanti I, Herlinda S, Muslim A, Hasyim H. 2022. First report of entomopathogenic fungi from South Sumatra (Indonesia): pathogenicity to egg, larvae, and adult of Culex quinquefasciatus. Biodiversitas 23: 5695-5702. DOI: 10.13057/biodiv/d231120.
Renkema JM, Cutler GC, Sproule JM, Johnson DL. 2020. Effect of Metarhizium anisopliae (Clavicipitaceae) on rhagoletis mendax (Diptera: Tephritidae) pupae and adults. The Canadian Entomologist 1-12. DOI:10.4039/tce.2019.73.
Riningrum RAF, Nadrawati, Turmudi E. 2020. Uji konsentrasi cendawan Beauveria bassiana (Bals.) Vuill terhadap mortalitas kepik polong (Riptortus linearis F.) pada tanaman kedelai. Jurnal Ilmu-Ilmu Pertanian Indonesia 22(1): 9 – 15. DOI: 10.31186/jipi.22.1.9-15.
Ritika, Joshi N, Sngha KS. 2019. Effect of Adjuvants on Lecanicillium lecanii Against Nymphs of Lipaphis erysimi (KALT). Indian Journal Entomology 81(3): 597-602. DOI: 10.5958/0974-8172.2019.00125.1.
Rodrigues IMW, Forim MR, da Silva MFGF, Fernandes JB and Filho AB. 2016. Effect of Ultraviolet Radiation on Fungi Beauveria bassiana and Metarhizium anisopliae, Pure and Encapsulated, and Bio-Insecticide Action on Diatraea saccharalis. Advances In Entomology 4: 151-162. DOI:10.4236/ae.2016.43016.
Rumbos CI and Athanassiou CG. 2017. Use of entomopathogenic fungi for the control of stored-product insects: can fungi protect durable commodities? J Pest Sci 90: 839-845. DOI:10.1007/s10340-017-0849-9
Sapteshwriya SV and Barad AH. 2020. Bio-efficacy of bio-pesticides against mealybug Ferrisia virgata infesting custard apple. International Journal Of Current Microbiology And Applied Sciences 11: 873-878.
Saputro TB, Prayugo Y, Rohman FL, Alami NH. 2019. The virulence of Beauveria bassiana in infecting Cyclas formicarius modulated by various chitin-based compounds. Biodiversitas 20(9): 2486-2493. DOI: 10.13057/biodiv/d200909.
Silva WO, Mitidieri S, Schrank A, Vainstein MH. 2005. Production and extraction of an extracellular lipase from the entomopathogenic fungus Metarhizium anisopliae. Process Biochemistry 40(1): 321-326. DOI: 10.1016/j.procbio.2004.01.005.
Subramaniam MSR, Babu A, Deka B. 2021. Lecanicillium lecanii (Zimmermann) Zare & Gams, as an efficient biocontrol agent of te thrips, Scirtothrips bispinosus Bagnall (Thysanoptera: Thripidae). Egyptian Journal Of Biological Pest Control 31:38. DOI: 10.1186/s41938-021-00380-y.
Tantawizal, Sarjan M, Supeno B, Patu BA, Hidayah BN. 2021. Development stages of soybean varieties against pod sucking pest Riptortus linearis F. (Hemiptera: Alydidae) under two different cultivation technologies. IOP Conf. Ser.: Earth Environ. Sci 913 012012. DOI:10.1088/1755-1315/913/1/012012.
Tumuhaise V, Ekesi S, Maniania, NK, Tonnang HEZ, Tanga CM, Ndegwa PN, Irungu LW, Srinivasan R, Mohamed SA. 2018. Temperature-dependent growth and virulence, and mass production potential of two candidate isolates of Metarhizium anisopliae (Metschnikoff) Sorokin for managing Maruca vitrata Fabricius (Lepidoptera: Crambidae) on cowpea. African Entomol 26: 73–83. DOI: 10.4001/003.026.0073.
Trela PK, Szpyrka E. 2022. The effect of natural and biological pesticides on the degradation of synthetic pesticides. Plant Protection Science 58: 273–291. DOI: 10.17221/152/2021-PPS.
Woertz JR, Kinney KA. 2005. Influence of sodium dodecyl sulfate and tween 20 on fungal growth and toluene degradation in a vapor-phase bioreactor. Journal Of Environmental Engineering 130: 292-299.
Xavier-Santos S., Lopes RB, Faria M. 2011. Emulsifiable oils protect Metarhizium robertsii and Metarhizium pingshaense conidia from imbibitional damage. Biological Control 59: 261-267. DOI:10.1016/j.biocontrol.2011.08.003.

Most read articles by the same author(s)

1 2 > >>