In vitro characterization of UB Forest (Malang, Indonesia) indigenous bacteria as plant growth promoting bacteria (PGPB)

##plugins.themes.bootstrap3.article.main##

LUQMAN QURATA AINI
IRISA TRIANTI
SHOLIKAH WIDYANITTA RACHMAWATI
ANTON MEILUS PUTRA
NABILLA ALYA ANASTASYA
ADI SETIAWAN

Abstract

Abstract. Aini LQ, Trianti I, Rachmawati SW, Putra AM, Anastasya NA, Setiawan A. 2023. In vitro characterization of UB Forest (Malang, Indonesia) indigenous bacteria as plant growth promoting bacteria (PGPB). Biodiversitas 24: 4558-4565. UB Forest, an educational forest of Universitas Brawijaya in Malang, East Java, has a mega-biodiversity of microbial germplasm. Previously, we obtained several UB Forest indigenous bacterial isolates and tested them on various plant commodities. However, the comprehensive characterization of the bacteria to produce IAA hormone, to overcome biotic and abiotic stresses as well as their potency as biofertilizers in vitro has not been carried out yet. In this study, we conducted in vitro assays to elucidate the potency of UB Forest indigenous bacterial isolates as Plant Growth Promoting Bacteria (PGPB). The molecular identification showed that the bacterial strains were dominated by the Pseudomonads, namely Pseudomonas versuta UB-36, P. aeruginosa UB-52, P. lundensis UB-53, P. migulae UB-54, and P. koreensis UB-62. Other strains were Enterococcus gallinarum UB-55 and Lysinibacillus fusiformis UB-64. Of the 7 bacterial strains, only 3 could inhibit Xanthomonas campestris. All bacterial strains were able to produce IAA, whereas five bacteria can solubilize phosphate, six bacteria can fix nitrogen, and four bacteria have both activities. All bacterial strains can grow at pH 5-6, salinity 5-15%, temperature 60°C, and 15% polyethylene glycol (PEG) drought stress media. The results suggested that the UB Forest indigenous bacterial strains have a role as plant growth-promoting bacteria (PGPB) and are expected to support the growth of plants grown under biotic and abiotic stress conditions.

##plugins.themes.bootstrap3.article.details##

References
Aini, L. Q., Aini, N., Yamika, W. S. D., & Setiawan, A. (2022). Screening of Plant Growth-Promoting Halotolerant Bacteria Isolated from Weeds Rhizosphere Grown in Saline Soil. Agrivita, 44(2), 322–331. https://doi.org/10.17503/agrivita.v44i2.3756
Aini, N., Yamika, W. S. D., Aini, L. Q., & Kurniawan, A. P. (2021). Application of saline tolerant bacteria and soil ameliorants improved growth, yield and nutrient uptake of tomato in saline land. Australian Journal of Crop Science, 15(6), 827–834. https://doi.org/10.21475/ajcs.21.15.06.p2903
Aini, N., Yamika, W. S. D., Kurniasari, N., Nugroho, A., & Aini, L. Q. (2023). The effect of halotolerant bacteria isolated from saline soil on growth and yield of maize in saline soil. Journal of Degraded and Mining Lands Management, 10(3), 4341–4347. https://doi.org/10.15243/jdmlm.2023.103.4341
Ajijah, N., Fiodor, A., Pandey, A. K., & Rana, A. (2023). Plant Growth-Promoting Bacteria (PGPB) with Biofilm-Forming Ability: A Multifaceted Agent for Sustainable Agriculture. Diversity, 15(1), 1–21.
Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., & Struhl, K. (1992). Current Protocols in Molecular Biology. Greene Publishing Association; Wiley-Interscience.
Beltrán-Acosta, C. R., Zapata-Narváez, Y. A., Millán-Montaño, D. A., & Díaz-García, A. (2022). Efecto de Bacillus amyloliquefaciens y Pseudomonas migulae sobre el crecimiento de plántulas de uchuva (Physalis peruviana L.) en semillero. Agronomía Mesoamericana, 34(1), 50669. https://doi.org/10.15517/am.v34i1.50669
Dinata, G. F., Aini, L. Q., & Abadi, A. L. (2021). Pengaruh Pemberian Plant Growth-Promoting Bacteria Indigenous terhadap Pertumbuhan Tanaman Bawang Merah (Allium ascalonicum). Agropross?: National Conference Proceedings of Agriculture, 5(SE-Conference Paper), 283–288. https://doi.org/10.25047/agropross.2021.231
Fauzul Izza, J., Qurata Aini, L., & Rizkyta Kusuma, R. (2018). Pemanfaatan Rhizobakteri dari Gulma di UB Forest sebagai Agen Antagonis Penyakit Layu Bakteri pada Kentang. Biotropika - Journal of Tropical Biology, 6(2), 54–63. https://doi.org/10.21776/ub.biotropika.2018.006.02.03
Foyer, C. H., Lam, H.-M., Nguyen, H. T., Siddique, K. H. M., Varshney, R. K., Colmer, T. D., Cowling, W., Bramley, H., Mori, T. A., Hodgson, J. M., Cooper, J. W., Miller, A. J., Kunert, K., Vorster, J., Cullis, C., Ozga, J. A., Wahlqvist, M. L., Liang, Y., Shou, H., … Considine, M. J. (2016). Neglecting legumes has compromised human health and sustainable food production. Nature Plants, 2, 16112. https://doi.org/10.1038/nplants.2016.112
Gang, S., Sharma, S., Saraf, M., Buck, M., & Schumacher, J. (2019). Analysis of Indole-3-acetic Acid (IAA) Production in Klebsiella by LC-MS/MS and the Salkowski Method. Bio-protocol, 9(9), e3230. https://doi.org/10.21769/BioProtoc.3230
Glick, B. R. (2012). Plant Growth-Promoting Bacteria: Mechanisms and Applications. Scientifica, 2012, 963401. https://doi.org/10.6064/2012/963401
Gull, A., Lone, A. A., & Wani, N. U. I. (2019). Biotic and Abiotic Stresses in Plants (A. B. de Oliveira (ed.)). IntechOpen. https://doi.org/10.5772/intechopen.85832
Haas, D., & Défago, G. (2005). Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Reviews. Microbiology, 3(4), 307–319. https://doi.org/10.1038/nrmicro1129
Herlina, L., Pukan, K. K., & Mustikaningtyas, D. (2017). The endophytic bacteria producing IAA (Indole Acetic Acid) in Arachis hypogaea. Cell Biology and Development, 1(1), 31–35. https://doi.org/10.13057/cellbioldev/v010106
Höfte, M. (2021). The use of Pseudomonas spp. as bacterial biocontrol agents to control plant disease. In Microbial bioprotectants for plant disease management. https://doi.org/10.19103/AS.2021.0093.11
Ibort, P., Molina, S., Núñez, R., Zamarreño, Á. M., García-Mina, J. M., Ruiz-Lozano, J. M., Orozco-Mosqueda, M. D. C., Glick, B. R., & Aroca, R. (2017). Tomato ethylene sensitivity determines interaction with plant growth-promoting bacteria. Annals of Botany, 120(1), 101–122. https://doi.org/10.1093/aob/mcx052
Jin, M., Liu, Y., Shi, B., Yuan, H., (2023). Exogenous IAA improves the seedling growth of Syringa villosa via regulating the endogenous hormones and enhancing the photosynthesis. Sci. Hortic. (Amsterdam). 308, 111585. https://doi.org/10.1016/j.scienta.2022.111585
Jussila, M. M., Jurgens, G., Lindström, K., & Suominen, L. (2006). Genetic diversity of culturable bacteria in oil-contaminated rhizosphere of Galega orientalis. Environmental Pollution, 139(2), 244–257. https://doi.org/https://doi.org/10.1016/j.envpol.2005.05.013
Karina, N., Roekhan, A., Diah Ayu Fitriana, C., & Qurata Aini, L. (2020). The Potency of UB Forest Bacteria as Chitinolytic Bacteria to Inhibit Anthracnose Disease on Cayenne Pepper. Research Journal of Life Science, 7(1), 41–51. https://doi.org/10.21776/ub.rjls.2020.007.01.5
Kawaguchi, A., Inoue, K., & Ichinose, Y. (2008). Biological control of crown gall of grapevine, rose, and tomato by nonpathogenic Agrobacterium vitis strain VAR03-1. Phytopathology, 98(11), 1218–1225. https://doi.org/10.1094/PHYTO-98-11-1218
Kumar, A., Kumari, M., Swarupa, P., & Shireen. (2019). Characterization of pH dependent growth response of agriculturally important microbes for development of plant growth promoting bacterial consortium. Journal of Pure and Applied Microbiology, 13(2), 1053–1061. https://doi.org/10.22207/JPAM.13.2.43
Li, M., Wang, J., Yao, T., Wang, Z., Zhang, H., & Li, C. (2021). Isolation and Characterization of Cold-Adapted PGPB and Their Effect on Plant Growth Promotion. Journal of Microbiology and Biotechnology, 31(9), 1218–1230. https://doi.org/10.4014/jmb.2105.05012
Patel, S., Jinal, H. N., & Amaresan, N. (2017). Isolation and characterization of drought resistance bacteria for plant growth promoting properties and their effect on chilli (Capsicum annuum) seedling under salt stress. Biocatalysis and Agricultural Biotechnology, 12, 85–89. https://doi.org/https://doi.org/10.1016/j.bcab.2017.09.002
Raaijmakers, J. M., & Mazzola, M. (2012). Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annual Review of Phytopathology, 50, 403–424. https://doi.org/10.1146/annurev-phyto-081211-172908
Raaijmakers, J. M., Vlami, M., & de Souza, J. T. (2002). Antibiotic production by bacterial biocontrol agents. Antonie van Leeuwenhoek, 81(1), 537–547. https://doi.org/10.1023/A:1020501420831
Roekhan, A., Dayanti, A. I., Oktaviani, R., Shinta, F., Anastasia, N. A., & Aini, L. Q. (2021). The Potency of UB Forest Chitinolytic Bacteria to Promote Plant Growth and Inhibit Damping off Disease on Soybean. Research Journal of Life Science, 8(1), 25–33. https://doi.org/10.21776/ub.rjls.2021.008.01.4
Rossi, M., Borromeo, I., Capo, C., Glick, B. R., Del Gallo, M., Pietrini, F., & Forni, C. (2021). PGPB improve photosynthetic activity and tolerance to oxidative stress in brassica napus grown on Salinized soils. Applied Sciences (Switzerland), 11(23). https://doi.org/10.3390/app112311442
Shultana, R., Kee Zuan, A. T., Yusop, M. R., & Saud, H. M. (2020). Characterization of salt-tolerant plant growth-promoting rhizobacteria and the effect on growth and yield of saline-affected rice. PLoS ONE, 15(9 september), 1–16. https://doi.org/10.1371/journal.pone.0238537
Souza, R. De, Ambrosini, A., & Passaglia, L. M. P. (2015). Plant growth-promoting bacteria as inoculants in agricultural soils. 419, 401–419.
Verma, S., Nizam, S., & Verma, P. K. (2013). Biotic and Abiotic Stress Signaling in Plants BT - Stress Signaling in Plants: Genomics and Proteomics Perspective, Volume 1. In M. Sarwat, A. Ahmad, & M. Z. Abdin (Eds.), Stress Signaling in Plants: Genomics and Proteomics Perspective (pp. 25–49). Springer New York. https://doi.org/10.1007/978-1-4614-6372-6_2
Xuanji, L., Witold, K., Dan, W., Shixue, Z., Gejiao, W., H., H. L., & Christopher, R. (2015). Draft Genome Sequence of Se(IV)-Reducing Bacterium Pseudomonas migulae ES3-33. Genome Announcements, 3(3), 10.1128/genomea.00406-15. https://doi.org/10.1128/genomea.00406-15

Most read articles by the same author(s)