Diversity characterization of three varieties of Cymbopogon nardus under different shade conditions

##plugins.themes.bootstrap3.article.main##

NURLAILI HABIBI DANATA
NURUL AINI
https://orcid.org/0000-0002-5600-0443
CICIK UDAYANA
ADI SETIAWAN
https://orcid.org/0000-0001-8380-2890
WIWIN SUMIYA DWI YAMIKA
https://orcid.org/0000-0001-5720-4248
RYO PRAMBUDI

Abstract

Abstract. Danata NH, Aini N, Udayana C, Setiawan A, Yamika WSD, Prambudi R. 2023. Diversity characterization of three varieties of Cymbopogon nardus under different shade conditions. Biodiversitas 24: 3574-3582. Cymbopogon nardus L. is a perennial aromatic plant distinguished for producing one of the world's most vital essential oils, citronella. This plant requires abounding sunlight to maximize the growth and quality of essential oils. The development of citronella can be implemented with an agroforestry system as an intercrop. However, the deterring factor restricting the propagation of citronella as an intercrop in agroforestry systems is the unavailability of adequate sunlight, consequently deteriorating the growth and quality of essential oils. This study investigated three varieties of C. nardus, i.e., Seraiwangi 1, Sitrona 1 Agribun, and Sitrona 2 Agribun, at distinctive shade proportions, i.e., 0%, 25%, 50%, and 75% shade. The examined parameters included the growth, physiological responses, yield, and quality of essential oils, i.e., citronellal, citronellol, and geraniol. Results demonstrate that the various types and shade percentages affect most examined parameters. The Seraiwangi 1 variety grown under 0% and 25% shade had nearly the same value, while the Sitrona 1 Agribun and Sitrona 2 Agribun varieties continued to experience declines ranging from 0%, 25%, 50%, to 75%. Nevertheless, shade extensively influences physiological responses such as photosynthetic rate and stomata width, and contrastingly there was a cipher effect on the stomata length. In the yield parameters, the oil concentration declined with the increase in shading percentage. The Seraiwangi 1 delivered superior quality of citronellal, citronellol, and geraniol compared to Sitrona 1 Agribun and Sitrona 2 Agribun varieties.

##plugins.themes.bootstrap3.article.details##

References
Chang, X., P.G. Alderson, and C.J. Wright. 2008. Solar irradiance level alters the growth of basil (Ocimum basilicum L.) and its content of volatile oils. Environ. Exp. Bot. 63: 216–223. doi: 10.1016/j.envexpbot.2007.10.017.
Dai, Y., Z. Shen, Y. Liu, L. Wang, D. Hannaway, et al. 2009. Effects of shade treatments on the photosynthetic capacity, chlorophyll fluorescence, and chlorophyll content of Tetrastigma hemsleyanum Diels et Gilg. Environ. Exp. Bot. 65: 177–182. doi: 10.1016/j.envexpbot.2008.12.008.
Degani, A. V., N. Dudai, A. Bechar, and Y. Vaknin*. 2016. Shade effects on leaf production and essential oil content and composition of the novel herb Eucalyptus citriodora Hook. J. Essent. Oil Bear. Plants 19(2): 410–420. doi: 10.1080/0972060X.2014.890080.
Fan, Y., J. Chen, Z. Wang, T. Tan, S. Li, et al. 2019. Soybean (Glycine max L. Merr.) seedlings response to shading: leaf structure, photosynthesis and proteomic analysis. BMC Plant Biol. 19(34): 1–12. doi: 10.1186/s12870-019-1633-1.
Fernandes, V.F., L.B. de Almeida, E.V. d. R.S. Feijó, D. da C. Silva, R.A. de Oliveira, et al. 2013. Light intensity on growth, leaf micromorphology and essential oil production of Ocimum gratissimum. Rev. Bras. Farmacogn. 23(3): 419–424. doi: 10.1590/S0102-695X2013005000041.
Hamzah, M.H., H. Che Man, Z.Z. Abidin, and H. Jamaludin. 2014. Comparison of citronella oil extraction methods from Cymbopogon nardus grass by ohmic-heated hydro-distillation, hydro-distillation, and steam distillation. BioResources 9(1): 256–272. doi: 10.15376/biores.9.1.256-272.
Hou, W., Y. Luo, X. Wang, Q. Chen, B. Sun, et al. 2018. Effects of shading on plant growth, flower quality and photosynthetic capacity of Rosa hybrida. AIP Conf. Proc. Biotechnol. Bioeng.: 1–7. doi: 10.1063/1.5034257.
Inderaja, B.M., O. Pradhita, R. Hanifah, R. Manurung, and M.Y. Abduh. 2018. Factors affecting biomass growth and production of essential oil from leaf and flower of Salvia leucantha Cav. J. Essent. Oil Bear. Plants 21(4): 1021–1029. doi: 10.1080/0972060X.2018.1506711.
Kaur, H., U. Bhardwaj, and R. Kaur. 2021. Cymbopogon nardus essential oil: a comprehensive review on its chemistry and bioactivity. J. Essent. Oil Res. 33(3): 205–220. doi: 10.1080/10412905.2021.1871976.
Khalid, M.H.B., M.A. Raza, H.Q. Yu, F.A. Sun, Y.Y. Zhang, et al. 2019. Effect of shade treatments on morphology, photosynthetic and chlorophyll flourescence characteristics of soybean (Glycine max L. Merr). Appl. Ecol. Environ. Res. 17(2): 2551–2569.
Li, T., L.N. Liu, C.D. Jiang, Y.J. Liu, and L. Shi. 2014. Effects of mutual shading on the regulation of photosynthesis in field-grown sorghum. J. Photochem. Photobiol. B Biol. 137: 31–38. doi: 10.1016/j.jphotobiol.2014.04.022.
Mahajan, M., R. Kuiry, and P.K. Pal. 2020. Understanding the consequence of environmental stress for accumulation of secondary metabolites in medicinal and aromatic plants. J. Appl. Res. Med. Aromat. Plants 18: 1–10. doi: 10.1016/j.jarmap.2020.100255.
Mohanty, S., N.S. Thakur, R.P. Gunaga, and N. Gajbhiye. 2019. Influence of Melia dubia Cav. Spatial Geometries on Growth, Herbage Yield and Essential Oil Constituents of Cymbopogon martinii (Roxb.) Wats. J. Essent. Oil Bear. Plants 22(3): 630–648. doi: 10.1080/0972060X.2019.1642144.
Saputra, N.A., H.S. Wibisono, S. Darmawan, and G. Pari. 2020. Chemical composition of Cymbopogon nardus essential oil and its broad spectrum benefit. IOP Conf. Ser. Earth Environ. Sci. 415(1): 6–13. doi: 10.1088/1755-1315/415/1/012017.
Semchenko, M., M. Lepik, L. Götzenberger, and K. Zobel. 2012. Positive effect of shade on plant growth: Amelioration of stress or active regulation of growth rate? J. Ecol. 100(2): 459–466. doi: 10.1111/j.1365-2745.2011.01936.x.
Shafiq, I., S. Hussain, M.A. Raza, N. Iqbal, M.A. Asghar, et al. 2021. Crop photosynthetic response to light quality and light intensity. J. Integr. Agric. 20(1): 4–23. doi: 10.1016/S2095-3119(20)63227-0.
Silva, C.F., F.C. Moura, M.F. Mendes, and F.L.P. Pessoa. 2011. Extraction of citronella (Cymbopogon nardus) essential oil using supercritical CO2: Experimental data and mathematical modeling. Brazilian J. Chem. Eng. 28(2): 343–350. doi: 10.1590/S0104-66322011000200019.
Song, R., D. Kelman, K.L. Johns, and A.D. Wright. 2012. Correlation between leaf age, shade levels, and characteristic beneficial natural constituents of tea (Camellia sinensis) grown in Hawaii. Food Chem. 133(3): 707–714. doi: 10.1016/j.foodchem.2012.01.078.
Sulaswatty, A., M.S. Rusli, H. Abimanyu, and S. Tursiloadi. 2019. Quo vadis minyak serai wangi dan produk turunannya. [Indonesian]
Suryanto, P., E.T.S. Putra, S. Kurniawan, B. Suwignyo, and D.A.P. Sukirno. 2014. Maize response at three levels of shade and its improvement with intensive agro forestry regimes in Gunung Kidul, Java, Indonesia. Procedia Environ. Sci. 20: 370–376. doi: 10.1016/j.proenv.2014.03.047.
Thakur, N.S., S. Mohanty, R.P. Gunaga, and N.A. Gajbhiye. 2019. Melia dubia Cav. spatial geometries influence the growth, yield and essential oil principles content of Cymbopogon flexuosus (Nees Ex Steud.) W.Watson. Agrofor. Syst. 94: 985–995. doi: 10.1007/s10457-019-00465-6.
Wahyudi, A. 2021. Sistem produksi minyak serai wangi berkelanjutan. Perspekt. Rev. Penelit. Tanam. Ind. 20(2): 94–105. [Indonesian]
Wan, Y., Y. Zhang, M. Zhang, A. Hong, H.Y. Yang, et al. 2020. Shade effects on growth, photosynthesis and chlorophyll fluorescence parameters of three Paeonia species. PeerJ 8(e9316): 1–19. doi: 10.7717/peerj.9316.
Widaryanto, E., M. Roviq, and A. Saitama. 2019. An Effective Method of Leaf Area Measurement of Sweet Potatoes. Biosci. Res. 16(2): 1423–1431. https://www.isisn.org/BR16(2)2019/1423-1431-16(2)2019BR19-214.pdf.
Widiputri, D.I., M.D. Gunawan-Puteri, and I.S. Kartawiria. 2019. Benchmarking study of Cymbopogon citratus and C. nardus for its development of functional food ingredient for anti-diabetic treatment. Iconiet Proceeding 2(2): 109–114. doi: 10.33555/iconiet.v2i2.20.
Yang, H., B. Dong, Y. Wang, Y. Qiao, C. Shi, et al. 2020. Photosynthetic base of reduced grain yield by shading stress during the early reproductive stage of two wheat cultivars. Sci. Rep. 10(14353): 1–15. doi: 10.1038/s41598-020-71268-4.
Yelfi, A., T.P. Napitupulu, and D.U. Meliana. 2019. Antihypertension activity of Cymbopogon nardus (L.) Rendle as an aromatherapy candle material at community health Center Kapuk II West Jakarta, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 308: 1–7. doi: 10.1088/1755-1315/308/1/012037.
Zulfikar, W. Aditama, and F.Y. Sitepu. 2019. The effect of lemongrass (Cymbopogon nardus) extract as insecticide against Aedes aegypti. Int. J. Mosq. Res. 6(1): 101–103.