Impact of plant growth-promoting bacteria on the growth performance and resistance enzymes of tatsoi mustard in a hydroponic system

##plugins.themes.bootstrap3.article.main##

NABILLA ALYA ANASTASYA
ANTON MEILUS PUTRA
SHOLIKAH WIDYANITTA RACHMAWATI
IRISA TRIANTI
ADI SETIAWAN
ABDUL LATIEF ABADI
LUQMAN QURATA AINI

Abstract

Abstract. Anastasya NA, Putra AM, Rachmawati SW, Trianti I, Setiawan A, Abadi AL, Aini LQ. 2024. Impact of plant growth-promoting bacteria on the growth performance and resistance enzymes of tatsoi mustard in a hydroponic system. Biodiversitas 25: 3309-3317. Hydroponic system faces some problems in greenhouse cultivation including various biotic and abiotic stresses. Applying plant growth-promoting bacteria (PGPB) in hydroponic systems can alleviate those problems by serving as nutrient providers, plant growth promoters, and maintaining plant resilience. Therefore, the aim of this study was to evaluate PGPB strains for their potential to enhance plant growth and induce plant defense-related enzymes and compounds in tatsoi mustard plants (Brassica narinosa L.H. Bailey) when cultivated in a nutrient film technique (NFT) hydroponic system. The experiment was performed in a randomized block design (RBD) consisting of seven treatments and three replications. The treatments included P1: control with AB mix only; P2: Pseudomonas versuta UB36; P3: Pseudomonas aeruginosa UB52; P4: Pseudomonas lundensis UB53; P5: Pseudomonas migulae UB54; P6: Enterococcus gallinarum UB55 and; P7: Lysinibacillus fusiformis UB64. Based on the results, it was concluded that application of PGPB on tatsoi mustard promoted plant growth and production in hydroponic systems, which was shown in the treatment of P. ludensis UB53, P. migulae UB54, and L. fusiformis UB64. In addition, inoculation of PGPB strains induced resistance enzymes and compounds, namely phenylalanine ammonia-lyase (PAL), polyphenol oxidase (PPO) and peroxidase (PO) enzymes, and phenolic compounds in tatsoi mustard plants. P. ludensis UB53, P. migulae UB54, Enterococcus gallinarum UB55, and L. fusiformis UB64 showed higher activity in inducing plant resistance enzymes and compounds. Thus, these results suggested that PGPB improved tatsoi plant resistance against biotic as well as abiotic stresses and has the potential to be developed as an effective strategy for pest and disease management and increasing crop yield of tatsoi mustard grown in hydroponic systems.

##plugins.themes.bootstrap3.article.details##

References
Abideen, Z., Qasim, M., Rasheed, A., Yousuf Adnan, M., Gul, B., & Ajmal Khan, M. (2015). ANTIOXIDANT ACTIVITY AND POLYPHENOLIC CONTENT OF PHRAGMITES KARKA UNDER SALINE CONDITIONS. In Pak. J. Bot (Vol. 47, Issue 3).
Aini, L. Q., Trianti, I., Rachmawati, S. W., Putra, A. M., Anastasya, N. A., & Setiawan, A. (2023). In vitro characterization of UB Forest (Malang, Indonesia) indigenous bacteria as plant growth promoting bacteria (PGPB). Biodiversitas, 24(8), 4558–4565. https://doi.org/10.13057/biodiv/d240837
Backer, R., Rokem, J. S., Ilangumaran, G., Lamont, J., Praslickova, D., Ricci, E., Subramanian, S., & Smith, D. L. (2018). Plant growth-promoting rhizobacteria: Context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. In Frontiers in Plant Science (Vol. 871). Frontiers Media S.A. https://doi.org/10.3389/fpls.2018.01473
Bhattacharya, A., Sood, P., & Citovsky, V. (2010). The roles of plant phenolics in defence and communication during Agrobacterium and Rhizobium infection. In Molecular Plant Pathology (Vol. 11, Issue 5, pp. 705–719). https://doi.org/10.1111/j.1364-3703.2010.00625.x
Bruni, L., Junge, R., Gartmann, F., Parisi, G., & Schmautz, Z. (2023). The Effect of Nutrient Source and Beneficial Bacteria on Growth of Pythium-Exposed Lettuce at High Salt Stress. Water (Switzerland), 15(11). https://doi.org/10.3390/w15112109
Bychkova, A. A. *, Zaitseva, Y. V, Sidorov, A. V, Aleksandrova, A. S., Marakaev, O. A., & Bychkova, A. A. (2022). Biotechnological potential of phosphate-solubilizing Pseudomonas migulae strain GEOT18. International Journal of Agricultural Technology, 18(4), 1403–1414.
Cappellari, L. del R., Chiappero, J., Santoro, M. V., Giordano, W., & Banchio, E. (2017). Inducing phenolic production and volatile organic compounds emission by inoculating Mentha piperita with plant growth-promoting rhizobacteria. Scientia Horticulturae, 220, 193–198. https://doi.org/10.1016/j.scienta.2017.04.002
Chen, X., Tang, Y. Y., Sun, X., Zhang, X., & Xu, N. (2022). Comparative transcriptome analysis reveals the promoting effects of IAA on biomass production and branching of Gracilariopsis lemaneiformis. Aquaculture, 548. https://doi.org/10.1016/j.aquaculture.2021.737678
Compant, S., Samad, A., Faist, H., & Sessitsch, A. (2019). A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application. In Journal of Advanced Research (Vol. 19, pp. 29–37). Elsevier B.V. https://doi.org/10.1016/j.jare.2019.03.004
de Andrade, L. A., Santos, C. H. B., Frezarin, E. T., Sales, L. R., & Rigobelo, E. C. (2023). Plant Growth-Promoting Rhizobacteria for Sustainable Agricultural Production. In Microorganisms (Vol. 11, Issue 4). MDPI. https://doi.org/10.3390/microorganisms11041088
Dogbo, D. O., Gogbeu, S. J., N’zue, B., Yao, K. A., Zohouri, G. P., Mamyrbekova-Bekro, J. A., & Bekro, Y.-A. (2012). COMPARATIVE ACTIVITIES OF PHENYLALANINE AMMONIA-LYASE AND TYROSINE AMMONIA-LYASE AND PHENOLIC COMPOUNDS ACCUMULATED IN CASSAVA ELICITED CELL. In African Crop Science Journal (Vol. 20, Issue 2).
Elsharkawy, M. M., & El-Khateeb, N. M. M. (2019). Antifungal activity and resistance induction against Sclerotium cepivorum by plant growth-promoting fungi in onion plants. Egyptian Journal of Biological Pest Control, 29(1). https://doi.org/10.1186/s41938-019-0178-9
Elsharkawy, M. M., Sakran, R. M., Ahmad, A. A., Behiry, S. I., Abdelkhalek, A., Hassan, M. M., & Khedr, A. A. (2022). Induction of Systemic Resistance against Sheath Blight in Rice by Different Pseudomonas Isolates. Life, 12(3). https://doi.org/10.3390/life12030349
Fussy, A., & Papenbrock, J. (2022). An Overview of Soil and Soilless Cultivation Techniques—Chances, Challenges and the Neglected Question of Sustainability. In Plants (Vol. 11, Issue 9). MDPI. https://doi.org/10.3390/plants11091153
Goddek, S., Joyce, A., Kotzen, B., & Burnell Editors, G. M. (2019). Aquaponics Food Production Systems Combined Aquaculture and Hydroponic Production Technologies for the Future.
Helmy, M. (2008). Inducing Resistance against Rust Disease of Sugar Beet by Certain Chemical Compounds. https://www.researchgate.net/publication/237799319
Kousar, B., Bano, A., & Khan, N. (2020). PGPR modulation of secondary metabolites in tomato infested with Spodoptera litura. Agronomy, 10(6). https://doi.org/10.3390/agronomy10060778
Lee, S., & Lee, J. (2015). Beneficial bacteria and fungi in hydroponic systems: Types and characteristics of hydroponic food production methods. In Scientia Horticulturae (Vol. 195, pp. 206–215). Elsevier B.V. https://doi.org/10.1016/j.scienta.2015.09.011
Liang, J.-G., Tao, R.-X., Hao, Z.-N., Wang, L.-P., & Zhang, X. (2011). Induction of resistance in cucumber against seedling damping-off by plant growth-promoting rhizobacteria (PGPR) Bacillus megaterium strain L8. African Journal of Biotechnology, 10(36), 6920–6927. https://doi.org/10.5897/AJB11.260
Lichtenthaler, & Buschmann. (2001). Chlorophylls and Carotenoids: Measurement and Characterization by UV-VIS Spectroscopy.
Løvdal, T., Olsen, K. M., Slimestad, R., Verheul, M., & Lillo, C. (2010). Synergetic effects of nitrogen depletion, temperature, and light on the content of phenolic compounds and gene expression in leaves of tomato. Phytochemistry, 71(5–6), 605–613. https://doi.org/10.1016/j.phytochem.2009.12.014
Maoka, T. (2020). Carotenoids as natural functional pigments. In Journal of Natural Medicines (Vol. 74, Issue 1). Springer. https://doi.org/10.1007/s11418-019-01364-x
Mei, C., Zhou, D., Chretien, R. L., Turner, A., Hou, G., Evans, M. R., & Lowman, S. (2023). A Potential Application of Pseudomonas psychrotolerans IALR632 for Lettuce Growth Promotion in Hydroponics. Microorganisms, 11(2), 376. https://doi.org/10.3390/microorganisms11020376
Nadeem, S. M., Naveed, M., Ayyub, M., Khan, M. Y., Ahmad, M., & Zahir, Z. A. (2016). Potential, limitations and future prospects of Pseudomonas spp. for sustainable agriculture and environment: A Review. Soil Environ, 35(2), 106–145. www.se.org.pk
Nemali, K. (2022). History of Controlled Environment Horticulture: Greenhouses. HortScience, 57(2), 239–246. https://doi.org/10.21273/HORTSCI16160-21
Pinto, E., Almeida, A. A., Aguiar, A. A. R. M., & Ferreira, I. M. P. L. V. O. (2014). Changes in macrominerals, trace elements and pigments content during lettuce (Lactuca sativa L.) growth: Influence of soil composition. Food Chemistry, 152, 603–611. https://doi.org/10.1016/j.foodchem.2013.12.023
Putra, A. M., Anastasya, N. A., Rachmawati, S. W., Yusnawan, E., Syib`li, M. A., Trianti, I., Setiawan, A., & Aini, L. Q. (2024). Growth performance and metabolic changes in lettuce inoculated with plant growth promoting bacteria in a hydroponic system. Scientia Horticulturae, 327. https://doi.org/10.1016/j.scienta.2024.112868
Rafu, H., & Atini, B. (2023). POPULASI DAN INTENSITAS SERANGAN LARVA Spodoptera litura F. PADA TANAMAN SAWI HIJAU (Brassica juncea L.). Science of Biodiversity. https://doi.org/10.46201/jsb/vol4i1pp1-5
Raksun, A., Japa, L., & Mertha, I. G. (2019). PENGARUH JENIS MULSA DAN DOSIS PUPUK NPK TERHADAP PERTUMBUHAN DAN HASIL TANAMAN TERONG HIJAU (Solanum melongena L). Jurnal Biologi Tropis, 19(2), 142–146. https://doi.org/10.29303/jbt.v19i2.1115
Renault, D., Déniel, F., Vallance, J., Bruez, E., Godon, J. J., & Rey, P. (2018). Bacterial Shifts in Nutrient Solutions Flowing Through Biofilters Used in Tomato Soilless Culture. Microbial Ecology, 76(1), 169–181. https://doi.org/10.1007/s00248-017-1117-5
Sajali, C. U., & Khoiriah, S. (2023). Analisis Kelayakan Usahatani Sayuran Sawi Pagoda (Brassica narinosa L.) Hidroponik di HPT Farm Tulungagung. Journal of Agribusiness and Agrotechnology.
Sankaranarayanan, A., Khalifa, A. Y. Z., Amaresan, N., & Sharma, A. (2021). Soil microbiome to maximize the benefits to crop plants—a special reference to rhizosphere microbiome. Microbiome Stimulants for Crops, 125–140. https://doi.org/10.1016/B978-0-12-822122-8.00028-5
Savvas, D., & Gizas, G. (2002). Response of hydroponically grown gerbera to nutrient solution recycling and different nutrient cation ratios PII: S 0 3 0 4-4 2 3 8 ( 0 2 ) 0 0 0 5 4-7.
Silva, T., Jorge Cividanes Instituto Biológico Fernando André Salles Instituto Biológico Amanda Lis Pacíco Manfrim Perticarrari, F., & Beatriz Zambon Cunha, S. (2023). Insect pests and natural enemies associated with lettuce Lactuca sativa L. (Asteraceae) in an aquaponics system. https://doi.org/10.21203/rs.3.rs-3101590/v1
Singh, U. B., Malviya, D., Wasiullah, Singh, S., Pradhan, J. K., Singh, B. P., Roy, M., Imram, M., Pathak, N., Baisyal, B. M., Rai, J. P., Sarma, B. K., Singh, R. K., Sharma, P. K., Kaur, S. D., Manna, M. C., Sharma, S. K., & Sharma, A. K. (2016). Bio-protective microbial agents from rhizosphere eco-systems trigger plant defense responses provide protection against sheath blight disease in rice (Oryza sativa L.). Microbiological Research, 192, 300–312. https://doi.org/10.1016/J.MICRES.2016.08.007
Singleton, V. L., Orthofer, R., & Lamuela-Ravent6s, R. M. (1999). Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent.
Sofo, A., Scopa, A., Nuzzaci, M., & Vitti, A. (2015). Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses. In International Journal of Molecular Sciences (Vol. 16, Issue 6, pp. 13561–13578). MDPI AG. https://doi.org/10.3390/ijms160613561
Solekha, R., Susanto, F. A., Joko, T., Nuringtyas, T. R., & Purwestri, Y. A. (2020). Phenylalanine ammonia lyase (PAL) contributes to the resistance of black rice against Xanthomonas oryzae pv. oryzae. Journal of Plant Pathology, 102(2), 359–365. https://doi.org/10.1007/s42161-019-00426-z
Son, J. E., Kim, H. J., & Ahn, T. I. (2019). Hydroponic systems. In Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production: Second Edition (pp. 273–283). Elsevier Inc. https://doi.org/10.1016/B978-0-12-816691-8.00020-0
Souza, R., Ambrosini, A., & Passaglia, L. M. P. (2015). Plant growth-promoting bacteria as inoculants in agricultural soils. In Genetics and Molecular Biology (Vol. 38, Issue 4, pp. 401–419). Brazilian Journal of Genetics. https://doi.org/10.1590/S1415-475738420150053
Stegelmeier, A. A., Rose, D. M., Joris, B. R., & Glick, B. R. (2022). The Use of PGPB to Promote Plant Hydroponic Growth. In Plants (Vol. 11, Issue 20). MDPI. https://doi.org/10.3390/plants11202783
Sundravadana, S., Alice, D., Kuttalam, S., & Samiyappan, R. (2007). Azoxystrobin induces lignification-related enzymes and phenolics in rice (Oryza sativa L.) against blast pathogen (Pyricularia grisea). Journal of Plant Interactions, 2(4), 219–224. https://doi.org/10.1080/17429140701687387
Thakker, J. N., Patel, S., & Dhandhukia, P. C. (2013). Induction of Defense-Related Enzymes in Banana Plants: Effect of Live and Dead Pathogenic Strain of Fusarium oxysporum f. sp. cubense . ISRN Biotechnology, 2013, 1–6. https://doi.org/10.5402/2013/601303
Thomas, P., Knox, O. G. G., Powell, J. R., Sindel, B., & Winter, G. (2023). The Hydroponic Rockwool Root Microbiome: Under Control or Underutilised? In Microorganisms (Vol. 11, Issue 4). MDPI. https://doi.org/10.3390/microorganisms11040835
Vasdravanidis, C., Alvanou, M. V., Lattos, A., Papadopoulos, D. K., Chatzigeorgiou, I., Ravani, M., Liantas, G., Georgoulis, I., Feidantsis, K., Ntinas, G. K., & Giantsis, I. A. (2022). Aquaponics as a Promising Strategy to Mitigate Impacts of Climate Change on Rainbow Trout Culture. In Animals (Vol. 12, Issue 19). MDPI. https://doi.org/10.3390/ani12192523
Weber, D., Egan, P. A., Muola, A., Ericson, L. E., & Stenberg, J. A. (2020). Plant resistance does not compromise parasitoid-based biocontrol of a strawberry pest. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-62698-1
Yama, D. I., Kartiko, H., Budidaya, P., Perkebunan, T., Pertanian, J. T., Pontianak, N., Jenderal, J., Yani, A., Laut, B., Tenggara, P., Pontianak, K., Barat, K., Tanaman, P. B., Sawit, K., Perkebunan, J., Kelapa, P., Citra, S., Edukasi, W., Gapura, J., & Rawa Banteng, N. 8. (2020). PERTUMBUHAN DAN KANDUNGAN KLOROFIL PAKCOY (Brassica rappa L) PADA BEBERAPA KONSENTRASI AB MIX DENGAN SISTEM WICK. 12(1). https://doi.org/10.24853/jurtek.12.1.21-30
Yulistiana, E., Widowati, H., & Sutanto, A. (2020). PLANT GROWTH PROMOTING RHIZOBACTERIA (PGPR) DARI AKAR BAMBU APUS (Gigantochola apus) MENINGKATKAN PERTUMBUHAN TANAMAN. BIOLOVA, 1(1), 1–6. https://doi.org/10.24127/biolova.v1i1.23

Most read articles by the same author(s)

1 2 > >>