Bioremediation potential of rhizosphere bacterial consortium in lead (Pb) contaminated rice plants

##plugins.themes.bootstrap3.article.main##

MOHAMMAD UBAIDILLAH
NURHALIZA THAMRIN
FADIA INTAN CAHYANI
DINA FITRIYAH

Abstract

Abstract. Ubaidillah M, Thamrin N, Cahyani FI, Fitriyah D. 2023. Bioremediation potential of rhizosphere bacterial consortium in lead (Pb) contaminated rice plants. Biodiversitas 24: 4566-4571. Lead (Pb) is one of the toxic heavy metals detected in various chemical fertilizers and pesticides used in Indonesia. These chemicals can increase plant lead (Pb) accumulation and affect other organisms through its circulation with food chain. Excess amounts of Pb in soil may be remediated using different approaches such as bioremediation. Rhizosphere bacteria can be used as bioremediation agents to reduce Pb accumulation in plants and also increase plant growth. Actinomycetes, Azotobacter sp., Azospirillum sp., Rhizobium sp., Pseudomonas sp., Lactobacillus sp., Bacillus sp., and Streptomyces sp. are some of the several bacteria that can reduce lead (Pb) accumulation in plants by the ability to sequester Pb, change its oxidation state, or enable Pb to precipitate. This research was conducted to determine the ability of the rhizosphere bacterial consortium to prevent lead (Pb) accumulation in rice plants. This study confirmed that the application of rhizosphere bacterial consortium to rice plants contaminated with lead (Pb) can reduce the plant's lead (Pb) content by up to 45%. The use of a bacterial consortium did not significantly affect the growth parameters of the plant but increased root length by 41%, fresh weight by 32%, dry weight by 26%, and chlorophyll content by 25%, in rice plants contaminated with Pb.

##plugins.themes.bootstrap3.article.details##

References
Alexander, Y. (2000). Legal aspects of terrorism in the United States (Vol. 3). Oceana Pub., Incorporated.
Ashraf, U., Kanu, A. S., Mo, Z., Hussain, S., Anjum, S. A., Khan, I., ... & Tang, X. (2015). Lead toxicity in rice: effects, mechanisms, and mitigation strategies—a mini review. Environmental Science and Pollution Research, 22, 18318-18332. DOI: 10.1007/s11356-015-5463-x.
Ashraf, U., Kanu, A. S., Deng, Q., Mo, Z., Pan, S., Tian, H., & Tang, X. (2017). Lead (Pb) toxicity; physio-biochemical mechanisms, grain yield, quality, and Pb distribution proportions in scented rice. Frontiers in Plant Science, 8, 259. DOI: 10.3389/fpls.2017.00259.
Ashraf, U., & Tang, X. (2017). Yield and quality responses, plant metabolism and metal distribution pattern in aromatic rice under lead (Pb) toxicity. Chemosphere, 176, 141-155. DOI: 10.1016/j.chemosphere.2017.02.103.
Azzahra, D. M., Amir, A., & Hodijah, S. (2021). Faktor-faktor yang mempengaruhi impor beras di Indonesia Tahun 2001-2019. e-Journal Perdagangan Industri dan Moneter, 9(3), 181-192. DOI: 10.22437/pim.v9i3.14642.
Badan Pusat Statistik. 2021. Rata-Rata Konsumsi per Kapita Seminggu Beberapa Macam Bahan Makanan Penting, 2007 – 2021 : Publikasi Statistik Indonesia.
Baker, M. R., Coutelot, F. M., & Seaman, J. C. (2019). Phosphate amendments for chemical immobilization of uranium in contaminated soil. Environment International, 129(June), 565–572. DOI: 10.1016/j.envint.2019.03.017.
Bano, A., Ullah, F., Nosheen, A., 2012. Role of abscisic acid and drought stress on the activities of antioxidant enzymes in wheat. Plant Soil Environ. 58 (4), 181–185. DOI: 10.17221/210/2011-pse.
Basit, F., Bhat, J. A., Han, J., Guan, Y., Jan, B. L., Shakoor, A., & Alansi, S. (2022). Screening of rice cultivars for Cr-stress response by using the parameters of seed germination, morpho-physiological and antioxidant analysis. Saudi Journal of Biological Sciences, 29(5), 3918-3928. DOI: 10.1016/j.sjbs.2022.02.038.
Budianta, D., Napoleon, A., & Habi, M. L. (2022, March). Save our soil from heavy metals (Pb and Cd) accumulation for rice growth. In IOP Conference Series: Earth and Environmental Science (Vol. 1005, No. 1, p. 012001). IOP Publishing.
Celik, O., Atak, C., 2012. The effect of salt stress on antioxidative enzymes and proline content of two Turkish tobacco varieties. Turk. J. Biol. 36, 339–356. DOI: 10.3906/biy-1108-11.
Chhogyell, N., Pradhan, N., Ghimiray, M., Bajgai, Y., 2016. Evaluation of short duration rice (Oryza sativa) varieties as a strategy to cope with climate change. Proc Bhutan Ecol Soc 1, 91–103. doi: 10.9734/ijecc/2023/v13i82033.
Cruz-Hernández, M. A., Mendoza-Herrera, A., Bocanegra-García, V., & Rivera, G. (2022). Azospirillum spp. from Plant Growth-Promoting Bacteria to Their Use in Bioremediation. Microorganisms, 10(5), 1057. doi: 10.3390/microorganisms10051057.
Dreshaj, A., Millaku, B., Selimaj, A., Feka, F., & Kelmendi, M. (2016, September). Heavy Metals In Waters, Penetrating The Food, Ecosystems And The Economy Of Kosovo. In CBU International Conference Proceedings (Vol. 4, pp. 048-055). doi: 10.12955/cbup.v4.743.
El-Meihy, R. M., Abou-Aly, H. E., Youssef, A. M., Tewfike, T. A., & El-Alkshar, E. A. (2019). Efficiency of heavy metals-tolerant plant growth promoting bacteria for alleviating heavy metals toxicity on sorghum. Environmental and Experimental Botany, 162, 295-301. doi: 10.1016/j.envexpbot.2019.03.005.
El-meihy, R., Shi, X. C., Tremblay, P. L., & Zhang, T. (2021). Fast removal of toxic hexavalent chromium from an aqueous solution by high-density Geobacter sulfurreducens. Chemosphere, 263, 128281. doi: 10.1016/j.chemosphere.2020.128281.
Fang, Y., Sun, X., Yang, W., Ma, N., Xin, Z., Fu, J., Liu, X., Liu, M., Mariga, A.M., Zhu, X., Hu, Q., (2014) Concentrations and health risks of lead, cadmium, arsenic, and mercury in rice and edible mushrooms in China. Food Chem. 147, 147–151. doi: 10.1016/j.foodchem.2013.09.116.
Ghorbani A, Ghasemi Omran VO, Razavi SM, Pirdashti H, Ranjbar M (2019) Piriformospora indica confers salinity tolerance on tomato (Lycopersicon esculentum Mill.) through amelioration of nutrient accumulation, K+/Na+ homeostasis and water status. Plant Cell Rep 38:1151–1163. doi: 10.1007/s00299-019-02434-w.
Guo, H., Luo, S., Chen, L., Xiao, X., Xi, Q., Wei, W., ... & He, Y. (2010). Bioremediation of heavy metals by growing hyperaccumulaor endophytic bacterium Bacillus sp. L14. Bioresource technology, 101(22), 8599-8605. doi: 10.1016/j.biortech.2010.06.085.
Handayanto, E., Nuraini, Y., Muddarisna, N., Syam, N., & Fiqri, A. (2017). Fitoremediasi dan phytomining logam berat pencemar tanah. Universitas Brawijaya Press.
Hartini, E. (2011). Kadar plumbum (pb) dalam umbi bawang merah di kecamatan kersana kabupaten brebes. VISIKES: Jurnal Kesehatan Masyarakat, 10(1). doi: 10.14710/jkli.15.2.35-41.
Ihedioha, J.N., Ujam, O.T., Nwuche, C.O., Ekere, N.R., Chime, C.C., 2016. Assessment of heavy metal contamination of rice grains (Oryza sativa) and soil from Ada field, Enugu, Nigeria: estimating the human healtrisk. Hum. Ecol. Risk Assess. Int. J. 22, 1665–1677. doi: 10.1080/10807039.2016.1217390.
Ikhsan, F., Herayati, H., Abdullah, S., & Rukmayadi, Y. (2020). Eksplorasi bakteri penyerap logam Pb dari air Sungai Ciujung. Teknika: Jurnal Sains dan Teknologi, 16(2), 261-266. doi: 10.36055/tjst.v16i2.9338.
Janmohammadi, M., Bihamta, M. R., & Ghasemzadeh, F. (2013). Influence of rhizobacteria inoculation and lead stress on the physiological and biochemical attributes of wheat genotypes. Cercet?ri Agronomice în Moldova, 1(153): 50-67. doi: 10.2478/v10298-012-0074-x.
Javaid, S., uz Zaman, Q., Sultan, K., Riaz, U., Aslam, A., Saba Sharif, N. E., ... & Ibraheem, S. (2020). 5. Heavy metals stress, mechanism and remediation techniques in rice (Oryza sativa L.): A review. Pure and Applied Biology (PAB), 9(1), 403-426. doi: 10.19045/bspab.2020.90045.
Ketaren, C. B. B., Hakim, A. A., Fahrudin, A., & Wardiyatno, Y. (2019). Kandungan Logam Berat Pb Undur-Undur Laut dan Implikasinya Pada Kesehatan Manusia. Jurnal Biologi Tropis, 19(1), 90-100. doi: 10.29303/jbt.v19i1.1066.
Khan, F., Hussain, S., Tanveer, M., Khan, S., Hussain, H. A., Iqbal, B., & Geng, M. (2018). Coordinated effects of lead toxicity and nutrient deprivation on growth, oxidative status, and elemental composition of primed and non-primed rice seedlings. Environmental Science and Pollution Research, 25, 21185-21194. doi: 10.1007/s11356-018-2262-1.
Kurniawan, S. B., Ramli, N. N., Said, N. S. M., Alias, J., Imron, M. F., Abdullah, S. R. S., ... & Hasan, H. A. (2022). Practical limitations of bioaugmentation in treating heavy metal contaminated soil and role of plant growth promoting bacteria in phytoremediation as a promising alternative approach. Heliyon, 8(4), e08995. doi: 10.1016/j.heliyon.2022.e08995.
Mishra, J., Singh, R., & Arora, N. K. (2017). Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms. Front Microbiol 8: 1706. doi: 10.3389/fmicb.2017.01706.
Notohadiprawiro, T. (1995). Logam berat dalam pertanian. Jurnal manusia dan lingkungan, 2(7), 3-11.
Novita, Y., & Purnomo, T. (2012). Penyerapan logam timbal (Pb) dan kadar klorofil Elodea canadensis pada limbah cair pabrik pulp dan kertas. Lentera Bio, 1(1), 1-8.
Mao, C., Song, Y., Chen, L., Ji, J., Li, J., Yuan, X., ... & Theiss, F. (2019). Human health risks of heavy metals in paddy rice based on transfer characteristics of heavy metals from soil to rice. Catena, 175, 339-348. doi: 10.1016/j.catena.2018.12.029.
Meryandini, A. 2016. Pangan untuk Kesejahteraan Masyarakat. Bogor : PT Penerbit IPB Press.
Pan, Z., Zhang, R., & Zicari, S. (Eds.). (2019). Integrated Processing Technologies for Food and Agricultural By-Products. Academic press.
Popova, M.I., Molimard, P., Courau, S., Crociani, J., Dufour, C.L., Vacon, F., Carton, T., 2012. Beneficial effects of probiotics in upper respiratory tract infections and their mechanical actions to antagonize pathogens. Appl. Microbiol. 113 (6), 1305–1318. doi: 10.1111/j.1365-2672.2012.05394.x.
Rajeshkumar, S., Liu, Y., Zhang, X., Ravikumar, B., Bai, G., & Li, X. (2018). Studies on seasonal pollution of heavy metals in water, sediment, fish and oyster from the Meiliang Bay of Taihu Lake in China. Chemosphere, 191, 626-638. doi: 10.1016/j.chemosphere.2017.10.078.
Rinawati, D., & Sofiatun, S. (2019). Kandungan Logam Berat dan Pestisida pada Sayuran Segar di Kota Tangerang. HIGIENE: Jurnal Kesehatan Lingkungan, 4(3), 169-176. doi: 10.13170/depik.3.2.1455.
Rosariastuti, R., Sudadi, S., & Prasasti, F. S. (2020). A bioremediation process based on the application of Rhizobium sp. I3 and Ramie (Boehmeria nivea L.) in lead contaminated soils. Journal fur Kulturpflanzen, 72(2/3), 40-48.
Rumhayati, B. (2019). Sedimen Perairan: Kajian Kimiawi, Analisis, dan Peran. Universitas Brawijaya Press.
Sanjenbam, P., Saurav, K., & Kannabiran, K. (2012). Biosorption of mercury and lead by aqueous Streptomyces VITSVK9 sp. isolated from marine sediments from the bay of Bengal, India. Frontiers of Chemical Science and Engineering, 6(2), 198-202. DOI: 10.1007/s11705-012-1285-2.
Sharma, P., & Dubey, R. S. (2005). Lead toxicity in plants. Brazilian journal of plant physiology, 17, 35-52.
Shraim, A. M. (2017). Rice is a potential dietary source of not only arsenic but also other toxic elements like lead and chromium. Arabian Journal of Chemistry, 10, S3434-S3443. DOI: 10.1016/j.arabjc.2014.02.004.
Singh, S. N., & Tripathi, R. D. (Eds.). (2007). Environmental bioremediation technologies. Springer Science & Business Media.
Sukarjo, S., Hidayah, A., & Zulaehah, I. (2018, May). Pengaruh Pupuk Terhadap Akumulasi dan Translokasi Kadmium dan Timbal di Tanah dan Tanaman. Prosiding Seminar Nasional Pendidikan Biologi dan Saintek Ke-3. DOI: 10.24198/agrikultura.v20i3.953.
Sylvia, D. (2019). Analisis Sifat Fisik, Dan Kimia Pada Tanaman Padi (Oriza sativa L.) Yang Terdapat Di Daerah Industri Modern Cikande. Jurnal Farmamedika (Pharmamedika Journal), 4(2), 48-53. DOI: 10.47219/ath.v4i2.80.
Tian, W., Li, L., Xiao, X., Wu, H., Wang, Y., Hu, Z., ... & Cai, Q. (2022). Identification of a plant endophytic growth?promoting bacteria capable of inhibiting cadmium uptake in rice. Journal of Applied Microbiology, 132(1), 520-531. DOI: 10.1111/jam.15201.
Timková, I., Sedláková-Kaduková, J., & Pristaš, P. (2018). Biosorption and bioaccumulation abilities of actinomycetes/streptomycetes isolated from metal contaminated sites. Separations, 5(4), 54. DOI: 10.3390/separations5040054.
Tiquia-Arashiro, S. M. (2018). Lead absorption mechanisms in bacteria as strategies for lead bioremediation. Applied Microbiology and Biotechnology, 102(13), 5437–5444. DOI: 10.1007/s00253-018-8969-6.
Wignyanto. 2020. Bioremediasi dan Aplikasinya. Malang: Universitas Brawijaya Press.
Zakaria, Z., Zulkafflee, N. S., Mohd Redzuan, N. A., Selamat, J., Ismail, M. R., Praveena, S. M., ... & Abdull Razis, A. F. (2021). Understanding potential heavy metal contamination, absorption, translocation and accumulation in rice and human health risks. Plants, 10(6), 1070. DOI: 10.3390/plants10061070.
Zoghi, A., Salimi, M., Mirmahdi, R. S., Massoud, R., Khosravi-Darani, K., Mohammadi, R., ... & Tripathy, A. D. (2022). Effect of Pretreatments on bioremoval of metals and subsequent exposure to simulated gastrointestinal conditions. Quality Assurance and Safety of Crops & Foods, 14(3), 145-155. DOI: 10.15586/qas.v14i3.1012.

Most read articles by the same author(s)