Diversity and community structure of rhizosphere bacteria in shallot treated with Rhizophagus intraradices and Trichoderma asperellum

##plugins.themes.bootstrap3.article.main##

HERTINA ARTANTI
TRI JOKO
SURYANTI

Abstract

Abstract. Artanti H, Joko T, Suryanti. 2023. Diversity and community structure of rhizosphere bacteria in shallot treated with Rhizophagus intraradices and Trichoderma asperellum. Biodiversitas 24: 6248-6255. The rhizosphere is an area rich in nutrients and has high microbial activity. The condition of the rhizosphere area can influence plant growth and resistance to pathogens. This study aimed to determine the effect of the application of Rhizophagus intraradices and Trichoderma asperellum on the diversity and community structure of shallot rhizosphere bacteria as well as on the growth and health of shallots. Metagenomic analysis of the shallot rhizosphere was used to determine the diversity and structure of the bacterial community in shallots treated with R. intraradices, T. asperellum, control, and bulk soil. The results showed that the application of R. intraradices and T. asperellum affected the composition and diversity of rhizosphere bacteria and the number of rhizobacteria species. The structure of rhizosphere bacteria was not affected by the application of these two fungi. The diversity and number of rhizosphere bacterial species were able to increase plant growth and resistance, especially triggered by R. intraradices.

##plugins.themes.bootstrap3.article.details##

References
Akyol, T.Y., Niwa, R., Hirakawa, H., Maruyama, H., Sato, T., Suzuki, T. Fukunaga, A., Sato, T., Yoshida, S., Tawaraya, K., Saito, M., Ezawa, T. & Sato, S. 2019. Impact of Introduction of Arbuscular Mycorrhizal Fungi on the Root Microbial Community in Agricultural Fields. Microbes Environment 34 (1): 23-32.
Caballero, G.R., Caravaca, F., Gonzalez, A.J.F., Alguacil, M.M., Lopez, M.F., & Roldan, A. 2017. Arbuscular mychorrizal fungi inoculation mediated changes in rhizosphere bacterial community structure while promoting revegetation in a semiarid ecosystem. Science of the Total Environment 584-585: 838-848.
Diagne, N., Ngom, M., Djighaly, P.I., Fall, D., Hocher, V., & Svistoonoff, S. 2020. Roles of Arbuscular Mychorrhizal Fungi on Plant Growth and Performance: Importance in Biotic and Abiotic Stressed Regulation. Diversity 12 (370): 1-25.
Hao, L., Zhang, Z., Hao, B., Diao, F., Zhang, J., Bao, Z., & Gou, W. 2021. Arbuscular mycorrhizal fungi alter microbiome structure od rhizosphere soil to enhance maize tolerance to La. Ecotoxicology and Environtmental Safety 212: 1-9.
Huang, X.F., Chaparro, J.M., Reardon, K.F., Zhang, R., Shen, Q. & Vivanco, J.M. 2014. Rhizosphere interactions: root exudates, microbe, and microbial communities. Botany 91: 267-275.
Jamiolkowska, A., Bednarz, B.S., Patkowska, E., Buczkowska, H., Galazka, A., Grzadziel, J., & Kopacki, M. 2020. Effect of Mychorrizal Inoculation and Irrigation on Biological Properties of Sweet Pepper Rhizosphere in Organic Field Cultivation. Agronomy 10: 1-18.
Jie, W.G., Yao, Y.X., Guo, N., Zhang, Y.Z., & Qiao, W. 2021. Effect of Rhizophagus intraradices on Plant Growth and the Composition of Microbial Communities in the Roots of Continuous Cropping Soybean at Maturity. Sustainability 13: 1-12.
Joko, T., Koentjoro, M.P., Somowiyarjo, S., Rohman, M.S., Liana, A. & Ogawa, N. 2012. Response of rhizobacterial communities in watermelon to infection with cucumber green mottle mosaic virus as revealed by cultivation-dependent RISA. Archives of Phytopathology and Plant Protection 45: 1810-1818.
Lopez, M.F., Saad, H.C.R., Abarca, F.M., Garrido, J.F.A., & Toro, N. 2012. Rhizosphere Metagenomics. Encyclopedia of Metagenomic 1-8.
Nanjundappa, A., Bagyaraj, D.J., Saxena, A.K., Kumar, M., & Chakdar, H. 2019. Interaction between arbuscular mycorrhizal fungi and Bacillus spp. in soil enhancing growth of crop plants. Fungal Biology and Biotechnology 6 (23): 1-10.
Navitasari, L., Joko, T., Murti, R.H., & Arwiyanto, T. 2020. Rhizobacterial community structure in grafted tomato plants infected by Ralstonia solanacearum. Biodiversitas 21 (10): 4888-4895.
Senkovs, M., Nikolajeva, V., Makarenkova, G., & Petrina, Z. 2021. Influence of Trichoderma asperellum and Bacillus subtilis as biocontrol and plant growth promoting agents on soil microbiota. Annals of Microbiology 71:34.
Singh, H.B., Keswani, C., Reddy, M.S., Sansinenea, E., & Estrada, C.G. 2019. Secondary Metabolite of Plant Growth Promoting Rhizomicroorganisms. Singapore: Springer Nature. 410p.
Soni, R., Kumar, V., Suyal, D.C., Jain, L., & Goel, R. 2017. Understanding Host-Microbiome Interactions-An Omics Approach: Metagenomics of Plant Rhizosphere Microbiome. Singapore: Springer Nature 193-205p.
Wang, H., Zhang, R., Mao, Y., Jiang, W., Chen, X., Shen, X., Yin, C. & Mao, Z. 2022. Effect of Trichoderma asperellum 6S-2 on Apple Tree Growth and Repalnted Soil Microbial Environment. Journal of Fungi 8 (63): 1-18.
Wang, F. & Feng, G. 2021. Arbuscular Mychorrizal Fungi Interactions in the Rhizosphere on Rhizosphere Biology: Interactions Between Microbes and Plant, Rhizosphere Biology. Singapore: Springer Nature. 217-235p.
Xiang, Y.X., Huang, X., Wu, W., Du, L., Zhang, L., & Liu, Y. 2020. Effects of different rotation on the occurrence of clubroot disease and diversity of rhizosphere microbes. Journal of Integrative Agriculture 19 (9): 2265-2273.
Zhang, Y., Tian, C., Xiao, J., Wei, L., Tian, Y., & Liang, Z. 2020. Soil inoculation of Trichoderma asperellum M45a regulates rhizosphere microbes and triggeres watermelon resistance to Fusarium wilt. AMB Express 10 (189): 1-13.
Zin, N.A. & Badalludin, N.A. 2020. Biological functions of Trichoderma spp. for agriculture applications. Annals of Agricultural Sciences 65: 168-178.

Most read articles by the same author(s)

1 2 > >>