Abundance and factors affecting the appearance of Siamese fireback and Red junglefowl in the lowland forest of Thailand

##plugins.themes.bootstrap3.article.main##

RONGLARP SUKMASUANG
PHRAEMAI CHAISOMBOON
PAANWARIS PAANSRI
YONGYUT TRISURAT
PEMIKA KANKA
NORASET KHIOWSREE
BUNYATHIPORN KAEWDEE
KITTIWARA SIRIPATTANUKUL
ANDAMAN CHANKHAO

Abstract

Abstract. Sukmasuang R, Chaisomboon P, Paansri P, Trisurat Y, Kanka P, Khiowsree N, Kaewdee B, Siripattanukul K, Chankhao A. 2023. Abundance and factors affecting the appearance of Siamese fireback and Red junglefowl in the lowland forest of Thailand. Biodiversitas 24: 5718-5730. Pheasants are indeed important species in various ecosystems. Studies of the abundance and factors influencing the presence of pheasant species have been conducted in the lowland areas of the Khao Ang Rue Nai Wildlife Sanctuary, Thailand, using camera trapping and species distribution models. A total of 23 factors, 2 bio-physiological, 2 geophysical, and 19 climate factors, were used to analyze in this study. The study revealed the presence of only two species of pheasants in the surveyed area, namely the Siamese fireback (Lophura diardi) and the Red junglefowl (Gallus gallus). The encounter rates were calculated as 1.74 photos per 100 trap nights for the Siamese fireback and 2.28 photos per 100 trap nights for the Red junglefowl. The factors influencing the presence of both Siamese fireback and the Red junglefowl were climate factors followed by biophysical and topography factors, respectively. The study's results highlight the importance of climate factors to the appearance of the pheasants, even in lowland areas. The results showed that the both pheasants responded more positively to the secondary forests, the grassland followed by dry dipterocarp forest than to other forest types. Therefore, conservation efforts to protect the areas inside are crucial for conserving the species' population.

##plugins.themes.bootstrap3.article.details##

References
Aslam M. 2022. Comparing the Performance of Navigation Systems Under Complex Environment. Int. J. Comput. Intell. Syst. 15: 55. DOI: 10.1007/s44196-022-00113-5
Cao A, Shi X. 2022. The Effects of Climate Change on Habitat Connectivity: A Case Study of the Brown-Eared Pheasant in China. Land 11(6): 806. DOI: 10.3390/land11060806
Charaspet K, Sukmasuang R, Khoewsree N, Pla-Ard M, Paansri P, Keawdee B, Chanachai Y, Bhumpakphan N. 2021. Spatial and temporal overlaps of top predators: Dhole, tiger and leopard, and their potential prey in Huai Kha Khaeng Wildlife Sanctuary, Thailand. Biodiversitas 22(2): 580-592. DOI: 10.13057/biodiv/d220209
Chhetri B, Badola HK, Barat S. 2021. Modelling climate change impacts on distribution of Himalayan pheasants. Ecol. Indic. 123 (2021) 107368:1–10. DOI: 10.1016/j.ecolind.2021.107368.
Choo YR, Kudavidanage EP, Amarasinghe TR, Nimalrathna T, Chua MAH, Webb EL. 2020. Best practices for reporting individual identification using camera trap photographs. GECCO 24: e01294. DOI: 10.1016/j.gecco. 2020.e01294
Department of National Parks, Wildlife and Plant Conservation (DNP). 2018. Khao Ang Rue Nai Wildlife Sanctuary. www.dnp.go.th/wildlifenew/animConserveDep.aspx.
Dimond R, Wheeler M, Hand N, Westbury D. 2013. An investigation into the relationship between pheasants (Phasianus colchicus) and reptiles as prey. Herpetol. J. 24:3–6.
DNPWC and DFSC. 2018. Pheasant Conservation Action Plan for Nepal (2019-2023). Department of National Parks and Wildlife Conservation and Department of Forests and Soil Conservation. Kathmandu, Nepal
Dwight IA, Vogt JH, Coates PS, Fleskes JP, Connelly DP, Gardner SC. 2020. Linking nest microhabitat selection to nest survival within declining pheasant populations in the Central Valley of California. Wildl. Res. 47: 391–403. DOI: 10.1071/WR18199
Eskildsen A, Roux PC, Heikkinen RK, Høye TT, Kissling WD, Pöyry J, Wisz MS, Luoto M. 2013. Testing species distribution models across space and time: High latitude butterflies and recent warming.
Fan F, Bu H, McShea WJ, Shen X, Li BV, Li S. 2020. Seasonal habitat uses and activity patterns of blood pheasant Ithaginis cruentusbe in the presence of free-ranging livestock. GECCO 23: e01155. DOI: 10.1016/j.gecco. 2020.e01155.
Fick SE, Hijmans RJ. 2017. WorldClim 2: New 1-km Spatial Resolution Climate Surfaces for Global Land Areas. Int. J. Climatol. 37: 4302-4315. DOI: 10.1002/joc.5086
Fuller RA, Garson PJ. 2000. Pheasants. Status Survey and Conservation Action Plan 2000–2004. WPA/BirdLife/SSC Pheasant Specialist Group. IUCN, Gland. Switzerland and Cambridge, UK and the World Pheasant Associatiion, Reading, UK
Furqan M, Ali Z. 2020. Feeding Ecology, Threats and Conservation Management of Kalij Pheasant (Lophura leucomelanos) in Azad Jammu and Kashmir, Pakistan. Pakistan J. Zool. 54(6): 2543-2551. DOI: 10.17582/journal.pjz/20200816170856
Game and Wildlife Conservation Trust. 2023. Camera Traps for Game Management. Charity registered in England and Wales, 1112023, in Scotland SC038868. www.gwct.org.uk/advisory/guides/camera-traps-for-game-management/
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Javis A. 2005. Very high-resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25(15): 1965–1978. DOI: 10.1002/joc.1276
Hussain MS, Sultana A. 2013. Diet of threatened pheasant species in Himalayas, India – A faecal analysisa. Ecol. Balk. 5(1): 57-68. www.eb.bio.uni-plovdiv.bg
IUCN .2023. The IUCN Red List of Threatened Species. Version 2022-2. www.iucnredlist.org
Kays R, Arbogast BS, Baker-Whatton M, Beirne C, Boone HM, Bowler M, Burneo SF, Cove MV, Ding P, Espinosa S, Gonçalves ALS, Hansen CP, Jansen PA, Kolowski JM, Knowles TW, Lima MGM, Millspaugh J, McShea WJ, Pacifici K, Parsons AW, Pease BS, Rovero F, Santos F, Schuttler SG, Sheil D, Si X, Snider M, Spironello WR. 2020. An empirical evaluation of camera trap study design: how many, how long, and when? Methods Ecol. Evol. 11: 700 –713. DOI: 10.1111/2 041-210X.13370.
Khanum R, Mumtaz AS, Kumar S. 2013. Predicting impacts of climate change on medicinal asclepiads of Pakistan using Maxent modeling. Acta oecol. 49: 23–31. DOI: 10.1016/j.actao.2013.02.007
Kolowski JM, Oley J, McShea WJ. 2021. High-density camera trap grid reveals lack of consistency in detection and capture rates across space and time. Ecosphere 12(2): e03350. DOI: 10.1002/ecs2.3350
Kovach Computing Services. 2023. Oriana. www.kovcomp.co.uk/
Lavazza L, Morasca S, Rotoloni G. 2023. On the Reliability of the Area Under the ROC Curve in Empirical Software Engineering. In: Proceedings of the International Conference on Evaluation and Assessment in Software Engineering (EASE’23), 14–16 June,2023, [Finland] DOI: 10.1145/3593434.3593456
Madden JR. 2021. How many gamebirds are released in the UK each year? Eur. J. Wildl. Res. 67(72). DOI: 10.1007/s10344-021-01508-z
Mason LR, Bicknell JE, Smart J, Peach WJ. 2020. The impacts of Non-native Gamebird Release in the UK: an Updated Evidence Review. RSPB Research Report No. 66. RSPB Centre for Conservation Science, Sandy, UK. www.rspb.org.uk/globalassets/mason-et-al-2020-rspb-gamebird-review-1-compressed.pdf
Mekonen S. 2017. Birds as Biodiversity and Environmental Indicator. J. Nat. Sci. 7(21): 28-34. www.core.ac.uk/reader/234657570
Ortiz-Burgos S. 2016. Shannon-Weaver Diversity Index. In: Kennish MJ. (eds) Encyclopedia of Estuaries. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. DOI: 10.1007/978-94-017-8801-4_233
Palencia P, Rowcliffe JM, Vicente J, Acevedo P. 2021. Assessing the camera trap methodologies used to estimate density of unmarked populations. J. Appl. Ecol. 58: 1583-1592. DOI: 10.1111/1365-2664.13913
Phillips SJ, Anderson RP, Schapire RE. 2006. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190(3–4): 231–259. DOI: 10.1016/j.ecolmodel.2005.03.026
Phillips SJ, Anderson RP, Dudík M, Schapire RE, Blair ME. 2017. Opening the black box: An open?source release of Maxent. Ecography 40(7): 887-893. DOI: 10.1111/ecog.03049
Promnun P, Kongrit C, Tandavanitj N, Techachoochert S, Khudamrongsawat J. 2020. Predicting Potential Distribution of an Endemic Butterfly Lizard, Leiolepis ocellata (Squamata: Agamidae). Trop. Nat. Hist. 20 (1): 60–71. www.li01.tci-thaijo.org/index.php/tnh/article/view/198819
Promnun P, Tandavanitj N, Kongrit C, Kongsatree K, Kongpraphan P, Dongkumfu W, Kumsuan D, Khudamrongsawat J. 2021. Phylogeography and ecological niche modeling reveal evolutionary history of Leiolepis ocellata (Squamata, Leiolepidae). Ecol. Evol. 11(5): 2221-2233. DOI: 10.1002/ece3.7186
QGIS Development Team, Q .2020. QGIS Geographic Information System. Open-Source Geospatial Foundation.
Rowcliffe JM, Kays R, Kranstauber B, Carbone C, Jansen PA. 2014. Quantifying levels of animal activity using camera trap data. Methods Ecol. Evol. 5(11): 1170-1179. doi.org/10.1111/2041-210X.12278
Ruengtik J, Sukmasuang R, Charaspet K, Pla-ard M, Panganta T, Duengkae P, Bhumpakphan N. 2019. Diversity and Abundance of Carnivorous Mammals in Khao Ang Rue Nai Wildlife Sanctuary, Chachoengsao Province. Thai J. For. 38 (2): 1-15. www.li01.tci-thaijo.org/index.php/tjf/article/view/245836/168064
Sollmann R, Mohamed A, Samejima H, Wilting A. 2013. Risky business or simple solution – Relative abundance indices from camera-trapping. Biol. Conserv. 159: 405-412. DOI: 10.1016/j.biocon.2012.12.025.
Su T, Li Q, Wang X, Cui G, Man Z, Li W, Zhao M. 2022. The Ecological Roles of Medium and Small Carnivores in the Terrestrial Animal Community in Liancheng National Nature Reserve, China. Animals 12(24):3518. DOI: 10.3390/ani12243518
Subba B, Sen S, Ravikanth G, Nobis MP. 2018. Direct modelling of limited migration improves projected distributions of Himalayan amphibians under climate change. Biol. Conserv. 227: 352-360. DOI: 10.1016/j.biocon.2018.09.035
Sukmasuang R, Charaspet K, Reontik J, Pla-ard M. 2020. Temporal overlap of carnivorous mammal community and their prey in Khao Ang Rue Nai Wildlife sanctuary, Chachoengsao Province, Thailand. Biodiversitas 21: 922-932. DOI:10.13057/biodiv/d210310
Sukumal. 2009. Habitat Use and Home Range Analysis of Siamese Fireback (Luphula diardi) and Silver Pheasant (L. nycthemera) in Sub-montane Forest, Khao Yai National Park, Thailand. [Dissertation]. King Mongkut's Institute of Technology Thonburi. [Thailand]
Tanwar KS, Sadhu A, Jhala YV. 2021. Camera trap placement for evaluating species richness, abundance, and activity. Sci Rep 11: 23050. DOI: 10.1038/s41598-021-02459-w
Vy NT, Ngoprasert D, Browne S, Savini T. 2018. Status and range decline of two galliform species in South-East Asia. Bird Conserv. Int. 28(3): 423-438. DOI:10.1017/S0959270917000168
Wang B, Xu Y, Price ML, Yang N, Liu W, Zhu B, Zhong X, Ran J. 2020. Niche partitioning among three montane ground?dwelling pheasant species along multiple ecological dimensions. Ibis 163(1): 171-182. DOI: 10.1111/ibi.12842
Williams ST, Maree N, Taylor P, Belmain SR, Keith M, Swanepoel LH. 2018. Camera trap and questionnaire dataset on ecosystem services provided by small carnivores in agro-ecosystems in South Africa. Data in Brief 18: 753-759. DOI: 10.1016/j.dib.2018.03.071.
Zaragozí B, Belda A, Giménez P, Navarro JT, Bonet A. 2015. Advances in camera trap data management tools: Towards collaborative development and integration with GIS. Ecol. Inform. 30: 6–11. DOI: 10.1016/j.ecoinf.2015.08.001.

Most read articles by the same author(s)

1 2 3 > >>