In vitro mutagenesis on patchouli (Pogostemon cablin Benth.) with gamma-ray irradiation on leaf explants

##plugins.themes.bootstrap3.article.main##

RUT NORMASARI
ESTRI LARAS ARUMINGTYAS
RURINI RETNOWATI
WAHYU WIDORETNO

Abstract

Abstract. Normasari R, Arumingtyas EL, Retnowati R, Widoretno W. 2023. In vitro mutagenesis on patchouli (Pogostemon cablin Benth.) with gamma-ray irradiation on leaf explants. Biodiversitas 24: 6407-6414. Patchouli oil production in Indonesia has yet to meet international market demand, one of which is the quality of the patchouli superior seeds. Patchouli is propagated vegetatively through cuttings, causing limited variability and decreasing plant quality. In vitro mutagenesis with gamma-ray irradiation can increase plant genetic variability and produce superior patchouli plants. This study aimed to produce patchouli variants through in vitro mutagenesis by gamma-ray irradiation on patchouli leaf explants. To accomplish the research objectives mentioned above, the research stages included in vitro mutagenesis through gamma-ray irradiation, shoot regeneration, plantlet growth, and molecular analysis using SSR (Simple Sequence Repeat). Gamma-ray irradiation inhibited the growth of explants and shoot formation but could increase plantlet growth ability at low doses of 15-30 Gy. The dose of gamma-ray irradiation that caused the death of explants in fifty percent of the tested population (LD50) was 69 Gy. Molecular analysis of SSR on 50 plants regenerated from gamma-irradiated explants revealed monomorphic and polymorphic fragments compared to non-irradiated and donor plants. Primers Pca1 and Pca2 showed the highest percentage of polymorphic, with 77.3 and 50%, respectively. Gamma irradiation during in vitro culture is an alternate method for increasing genetic variety in patchouli breeding.

##plugins.themes.bootstrap3.article.details##

References
Abdulhafiz F, Kayat F, Zakaria S. 2018. Effect of gamma irradiation on the morphological and physiological variation from in vitro individual shoot of banana cv. Tanduk (Musa spp.). J Plant Biotechnol 45 (2): 140–145. DOI: 10.5010/JPB.2018.45.2.140
Andrew-Peter-Leon MT, Ramchander S, Kumar KK, Muthamilarasan M, Pillai MA. 2021. Assessment of efficacy of mutagenesis of gamma-irradiation in plant height and days to maturity through expression analysis in rice. PLoS One 16 (1): e0245603. DOI: 10.1371/journal.pone.0245603
Bairu MW, Aremu AO, van Staden J. 2011. Somaclonal variation in plants: Causes and detection methods. Plant Growth Regul 63 : 147–173. DOI: 10.1007/s10725-010-9554-x
Banyo YE, Indriyani S, Widoretno W. 2020. The effect of gamma irradiation on the growth and multiplication of the in vitro shoot of patchouli (Pogostemon cablin Benth.). J Exp Life Sci 10 (2): 144–149. DOI: 10.21776/ub.jels.2020.010.02.11
Calabrese EJ. 2018. Hormesis: Path and progression to significance. Int J Mol Sci 19 (10): 2871. DOI: 10.3390/ijms19102871
Doyle J. 1991. DNA protocols for plants. In: Hewitt GM, Johnston AWB, Young JPW, editors. Molecular Techniques in Taxonomy57th ed. Berlin, Heidelberg: Springer. p. 283–284. DOI: 10.1007/978-3-642-83962-7_18
Forloni M, Liu AY, Wajapeyee N. 2019. Methods for in vitro mutagenesis. Cold Spring Harb Protoc, in press. DOI: 10.1101/pdb.top097733
Gupta R, Bakshi P, Shah RA. 2022. Horticultural performance of field grown somaclones and irradiated strawberry (Fragaria × ananassa duch.) variants. Bangladesh J Bot 51 (3): 555–563. DOI: 10.3329/bjb.v51i3.62002
Hajizadeh HS, Mortazavi SN, Tohidi F, Y?ld?z H, Helvac? M, Alas T, Okatan V. 2022. Effect of mutation induced by gamma-irradiation in ornamental plant lilium (Lilium longiflorum cv. Tresor). Pakistan J Bot 54 (1): 1–8. DOI: 10.30848/PJB2022-1(23)
Hasbullah NA, Taha RM, Saleh A, Mahmad N. 2012. Irradiation effect on in vitro organogenesis, callus growth and plantlet development of Gerbera jamesonii. Hortic Bras 30 : 252–257. DOI: 10.1590/S0102-05362012000200012
Hernández-Muñoz S, Pedraza-Santos ME, López PA, Gómez-Sanabria JM, Morales-García JL. 2019. Mutagenesis in the improvement of ornamental plants. Rev Chapingo Ser Hortic 25 (3): 151–167. DOI: 10.5154/r.rchsh.2018.12.022
Jain PLB, Patel SR, Desai MA. 2022. Patchouli oil: an overview on extraction method, composition and biological activities. J Essent Oil Res 34 (1): 1–11. DOI: 10.1080/10412905.2021.1955761
Karadagli M, Ozcan BD. 2022. Isolation of keratinase-producing Bacillus strains and enhanced enzyme production using in vitro mutagenesis. An Acad Bras Cienc 94 (1): e20191253. DOI: 10.1590/0001-3765202120191253
Kim SH, Kim SY, Ryu J, Jo YD, Choi H Il, Kim JB, Kang SY. 2021. Suggested doses of proton ions and gamma-rays for mutation induction in 20 plant species. Int J Radiat Biol 97 (11): 1624–1629. DOI: 10.1080/09553002.2021.1969053
Laukkanen H, Rautiainen L, Taulavuori E, Hohtola A. 2000. Changes in cellular structures and enzymatic activities during browning of Scots pine callus derived from mature buds. Tree Physiol 20 (7): 467–475. DOI: dx.doi.org/10.1093/treephys/20.7.467
Liu H, Li H, Yang G, Yuan G, Ma Y, Zhang T. 2021. Mechanism of early germination inhibition of fresh walnuts (Juglans regia) with gamma radiation uncovered by transcriptomic profiling of embryos during storage. Postharvest Biol Technol 172 : 111380. DOI: 10.1016/j.postharvbio.2020.111380
Magdy AM, Fahmy EM, AL-Ansary AE-RMF, Awad G. 2020. Improvement of 6-gingerol production in ginger rhizomes (Zingiber officinale Roscoe) plants by mutation breeding using gamma irradiation. Appl Radiat Isot 162 : 109193. DOI: 10.1016/j.apradiso.2020.109193
Miri SM, Rahimi M, Khiabani BN, Vedadi C. 2019. Response of gamma-irradiated banana plants to in vitro and ex vitro salinity stress. Crop Breed J 9 (1 & 2): 33–44. DOI: 10.22092/cbj.2020.341706.1051
Muhallilin I, Aisyah SI, Sukma D. 2019. The diversity of morphological characteristics and chemical content of Celosia cristata plantlets due to gamma ray irradiation. Biodiversitas 20 (3): 862–866. DOI: 10.13057/biodiv/d200333
Mullins E, Bresson JL, Dalmay T, Dewhurst IC, Epstein MM, Firbank LG, Guerche P, Hejatko J, Moreno FJ, Naegeli H, et al. 2021. In vivo and in vitro random mutagenesis techniques in plants. EFSA J 19 (11): 1–30. DOI: 10.2903/j.efsa.2021.6611
Muñoz-Miranda LA, Rodríguez-Sahagún A, Acevedo Hernández GJ, Cruz-Martínez VO, Torres-Morán MI, Lépiz-Ildefonso R, Aarland RC, Castellanos-Hernández OA. 2019. Evaluation of somaclonal and ethyl methane sulfonate-induced genetic variation of Mexican oregano (Lippia graveolens HBK). Agronomy 9 (4): 166. DOI: 10.3390/agronomy9040166
Oladosu Y, Rafii MY, Abdullah N, Hussin G, Ramli A, Rahim HA, Miah G, Usman M. 2015. Principle and application of plant mutagenesis in crop improvement: a review. Biotechnol Biotechnol Equip 30 (1): 1–16. DOI: 10.1080/13102818.2015.1087333
Padmadevi K, Jawaharlal M. 2011. Induction of in vitro mutation in chrysanthemum (Dendranthema grandiflora Tzvelev) ray florets (var. Ravi Kiran) using gamma rays and EMS. Floric Ornam Biotechnol 5 (1): 74–77.
Ramesh P, Mallikarjuna G, Shaik S, Kumar A. 2020. Advancements in molecular marker technologies and their applications in diversity studies. J Biosci 45 (1): 123. DOI: 10.1007/s12038-020-00089-4
Rosmala A, Khumaida N, Sukma D. 2022. Effect of gamma irradiation on callus of handeuleum (Graptophillum pictum L. Griff) Kalimantan and Papua accession. J Hortik Indones 13 (1): 23–28. DOI: 10.29244/jhi.13.1.23-28
Sandes SS, Pinheiro JB, Zucchi MI, Monteiro M, Arrigoni-Blank MF, Blank AF. 2013. Development and characterization of microsatellite primers in Pogostemon cablin (Lamiaceae). Genet Mol Res 12 (3): 2837–2840. DOI: 10.4238/2013.August.8.4
Serrano-Fuentes MK, Gómez-Merino FC, Cruz-Izquierdo S, Spinoso-Castillo JL, Bello-Bello JJ. 2022. Gamma Radiation (60Co) Induces Mutation during In Vitro Multiplication of Vanilla (Vanilla planifolia Jacks. ex Andrews). Horticulturae 8 : 503. DOI: doi.org/10.3390/horticulturae8060503
Sherpa R, Devadas R, Bolbhat SN, Nikam TD, Penna S. 2022. Gamma radiation induced in-vitro mutagenesis and isolation of mutants for early flowering and phytomorphological variations in Dendrobium ‘Emma White.’ Plants 11 : 3168. DOI: 10.3390/plants11223168
Song X, Li N, Guo Y, Bai Y. 2021. Comprehensive identification and characterization of simple sequence repeats based on the whole-genome sequences of 14 forest and fruit trees. For Res 1 (1): 1–10. DOI: 10.48130/FR-2021-0007
Suhesti S, Susilowati M, Sirait N, Haryudin W, Hadipoentyanti E. 2022. Improvement of drought tolerance of patchouli through gamma irradiation and in vitro selection. IOP Conference Series: Earth and Environmental Science 974 : 12061. IOP Publishing. DOI: 10.1088/1755-1315/974/1/012061
Susila E, Susilowati A, Yunus A. 2019. The morphological diversity of Chrysanthemum resulted from gamma ray irradiation. Biodiversitas 20 (2): 463–467. DOI: 10.13057/biodiv/d200223
Swamy MK, Sinniah UR. 2016. Patchouli (Pogostemon cablin Benth.): Botany, agrotechnology and biotechnological aspects. Ind Crops Prod 87 (September): 161–176. DOI: 10.1016/j.indcrop.2016.04.032
Tahir M, Riniarti D, Ersan E, Kusuma J. 2019. Genetic and leaf characteristic diversity on 10 mutant progenies of patchouli (Pogostemon cablin) provide insights to selection strategies. AGRIVITA J Agric Sci 41 (1): 139–148. DOI: 10.17503/agrivita.v41i1.1908
Volkova PY, Bondarenko E, Kazakova EA. 2022. Radiation hormesis in plants. Curr Opin Toxicol 30 : 100334. DOI: 10.1016/j.cotox.2022.02.007
Widoretno W, Indriyani S. 2020. The effect of ethyl methane sulfonate (EMS) on the in vitro shoot regeneration of vetiver (Vetiveria zizanioides [L.] Nash). J Exp Life Sci 10 (3): 150–153. DOI: 10.21776/ub.jels.2020.010.03.01
Widoretno W, Rohmah M, Indriyani S. 2023. Effect of gamma-ray irradiation on vetiver grass (Vetiveria Zizanioides (L.) Nash.) in vitro shoots growth and multiplication. Advances in Biological Sciences Research 32: 181–190. Atlantis Press. DOI: 10.2991/978-94-6463-166-1_26
Zhou L, Wang Y, Han L, Wang Q, Liu H, Cheng P, Li R, Guo X, Zhou Z. 2021. Enhancement of patchoulol production in Escherichia coli via multiple engineering strategies. J Agric Food Chem 69 (27): 7572–7580. DOI: 10.1021/acs.jafc.1c02399

Most read articles by the same author(s)