Genetic diversity and proximate analysis of Indonesian local mung bean (Vigna radiata)

##plugins.themes.bootstrap3.article.main##

HIGA AFZA
ENDAH RETNO PALUPI
LINA HERLINA
SATRIYAS ILYAS

Abstract

Abstract. Afza H, Palupi ER, Herlina L, Ilyas S. 2023. Genetic diversity and proximate analysis of Indonesian local mung bean (Vigna radiata). Biodiversitas 24: 6377-6388. Mung bean is an important food crop because it has a high protein content. However, not much information is available about Indonesian local mung beans. This study aimed to obtain information about flowering and seed formation in local mung beans (Vigna radiata L.) to determine the genetic diversity of mung beans using simple sequence repeats and the protein, starch, fat, and ash content. Mung bean seeds of 15 genotypes were obtained from the Indonesian Agricultural Gene Bank collection. The experiment was arranged using a one-factor randomized complete block design. Genotypes with a low degree of non-synchrony of pod maturity (DDd) were Local Bima and Arta Koneng 01070. The highest fruit set was observed in the Madura Local accession (73.09%). The accumulated value of heat units was calculated as growing degree days; the heat units from planting to the first flowering ranged from 544.6-670°C and from planting to the first ripe pod (heatd2) and 90% ripe pod (heatd3) phases ranged from 819.7-933.7°C and 1,111.9-1,419.1°C. Phylogenetic tree construction was made based on scoring of the presence of alleles that appeared on the electrophoresis results of 12 microsatellite markers on 15 mung bean genotypes. The superior varieties, Vima1 and Walet, were separated from the other 13 local genotypes at a genetic similarity coefficient of 0.583. The protein contents of the tested mung bean genotypes were 19.19%-23.06%.

##plugins.themes.bootstrap3.article.details##

References
Ahsan M, Saleem M, Ali A. 2014. Genetic architecture of synchronous pods maturation and yield-related traits in mung bean [Vigna radiata ( L .) Wilczek ]. 8(3):85–92. ISSN: 1307-1130, E-ISSN: 2146-0108, www.nobel.gen.tr.
Akyuz FA, Kandel H, Morlock D. 2017. Developing a growing degree day model for North Dakota and Northern Minnesota soybeans. Agric For Meteorol. 239:134–140. doi:10.1016/j.agrformet.2017.02.027. DOI.org/10.1016/j.agrformet.2017.02.027
Al-khayri JM, Mohan S, Dennis J. 2019. Advances in Plant Breeding Strategies?: Legumes. Volume 7. ISBN : 978-3-030-23264-1
Atasagun B, Aksoy A, Güllü IB, Albayrak S. 2021. Reproductive biology of Astragalus argaeus (Fabaceae), a critically endangered endemic species. An Acad Bras Cienc. 93:1–11. DOI:10.1590/0001-3765202120201613.
Balitkabi. 2012. Deskripsi Vima 1.pdf.
Benlloch R, Berbel A, Serrano-Mislata A, Madueño F. 2007. Floral initiation and inflorescence architecture: A comparative view. Ann Bot. 100(3):659–676. DOI:10.1093/aob/mcm146.
Chaves SR, Santos RR dos, Silva ALG da. 2020. Reproductive Biology of Parkia platycephala Benth (Leguminosae, Caesalpinioideae, Clado Mimosoide) / Biologia Reprodutiva De Parkia platycephala Benth (Leguminosae, Caesalpinioideae, Clado Mimosoide). Brazilian J Dev. 6(10):79442–79458. DOI:10.34117/bjdv6n10-393.
Corvalán LCJ, Carvalho LR, Melo-Ximenes AA, Targueta CP, Braga-Ferreira RS, Nunes R, Telles MPC. 2023. Data of SSR primers for high-throughput genotyping-by-sequencing (SSR-Seq) based on the partial genome assembly of Eugenia klotzschiana (Myrtaceae). Data Br. 47. DOI:10.1016/j.dib.2023.108917.
Ebert AW, Chang CH, Yan MR, Yang RY. 2017. Nutritional composition of mung bean and soybean sprouts compared to their adult growth stage. Food Chem. 237:15–22. DOI:10.1016/j.foodchem.2017.05.073.
Elnesr MN, Alazba AA. 2016. An integral model to calculate the growing degree-days and heat units, a spreadsheet application. Comput Electron Agric. 124:37–45. DOI:10.1016/j.compag.2016.03.024.
Fakir, Monjurul Alam Mondal M, Ashrafuzzaman Md, Razi Ismal. 2011. Flowering pattern and reproductive efficiency in mung bean. Artic Int J Agric Biol. 13:966–970. ISSN Print: 1560–8530; ISSN Online: 1814–9596. 11–110/SBC/2011/13–6–966–970http://www.fspublishers.org.
Gayacharan, Tripathi K, Meena SK, Panwar BS, Lal H, Rana JC, Singh K. 2020. Understanding genetic variability in the mung bean (Vigna radiata L.) gene pool. Ann Appl Biol. 177(3):346–357. DOI:10.1111/aab.12624.
Geetika G, Collins M, Singh V, Hammer G, Mellor V, Smith M, Rachaputi RCN. 2022a. Canopy and reproductive development in mung bean (Vigna radiata). Crop Pasture Sci. 73(10):1142–1155. DOI:10.1071/CP21209.
Geetika G, Hammer G, Smith M, Singh V, Collins M, Mellor V, Wenham K, Rachaputi RCN. 2022b. Quantifying physiological determinants of potential yield in mung bean (Vigna radiata (L.) Wilczek). F Crop Res. 287 August:108648. DOI:10.1016/j.fcr.2022.108648.
González-Suárez P, Walker CH, Bennett T. 2020. Bloom and bust: understanding the nature and regulation of the end of flowering. Curr Opin Plant Biol. 57 Im:24–30. DOI:10.1016/j.pbi.2020.05.009.
Guleria P, Kumar V. 2017. Understanding the phenylpropanoid pathway for agronomical and nutritional improvement of mung bean. J Hortic Sci Biotechnol. 92(4):335–348. DOI:10.1080/14620316.2017.1286236.
Ha J, Kwon H, Cho KH, Yoon MY, Kim MY, Lee SH. 2020. Identification of epigenetic variation associated with synchronous pod maturity in mung bean (Vigna radiata L.). Sci Rep. 10(1):1–9. DOI:10.1038/s41598-020-74520-z.
Hasse L. 2015. Basic Atmospheric Structure and Concepts: Beaufort Wind Scale. Second Edi. Volume 1. Elsevier.
Iqbal J, Ahsan M, Saleem M, Ali A. 2015. Appraisal of gene action for indeterminate growth in mung bean [Vigna radiata (L.) Wilczek]. Front Plant Sci. 6 september:1–8. DOI:10.3389/fpls.2015.00665.
Jiang M, Yan S, Ren W, Xing N, Li H, Zhang M, Liu M, Liu X, Ma W. 2023. Genetic diversity of the Chinese medicinal plant Astragali Radix based on transcriptome-derived SSR markers. Electron J Biotechnol. 62:13–20. DOI:10.1016/j.ejbt.2022.12.001.
Kalapchieva S, Kosev V, Vasileva V. 2020. Genetic and phenotypic assessment of garden peas (Pisum sativum L.) genotypes. Basrah J Agric Sci. 33(1):107–121. DOI:10.37077/25200860.2020.33.1.09.
Khan MH, Shahadat MK, Kamar SSA, Tanzina T, SadiqurRahman. 2020. Phenology, Thermal Time Requirement, Growth and Yield of Winter Mung bean (Vigna Radiata) as Influenced by Sowing Dates in Ganges Tidal Floodplain (Aez-13) in Bangladesh. Open Access J Biog Sci Res. 4(2):1–7. DOI:10.46718/jbgsr.2020.04.000092.
Khattak GSS. 2021. High Yielding Mung bean [Vigna radiata (L.) Wilczek] Variety “NIFA Mung-2017.” Pure Appl Biol. 10(1). DOI:10.19045/bspab.2021.100012.
Khattak GSS, Ashraf M, Haq MA, McNeilly T, Rha ES. 2002. Genetic basis of plant height and its degree of indetermination in mung bean (Vigna radiata (L.) Wilczek). Hereditas. 137(1):52–56. DOI:10.1034/j.1601-5223.2002.1370107.x.
Khattak GSS, Ashraf M, Zamir R. 2004. Gene action for synchrony in pod maturity and indeterminate growth habit in mung bean (Vigna radiata (L.) Wilczek). Pakistan J Bot. 36(3):589–594.
Kim SK, Nair RM, Lee J, Lee SH. 2015. Genomic resources in mungbean for future breeding programs. Front Plant Sci. 6 AUG:1–12. DOI:10.3389/fpls.2015.00626.
Lee E, Yang X, Ha J, Kim MY, Park KY, Lee SH. 2021. Identification of a Locus Controlling Compound Raceme Inflorescence in Mungbean [Vigna radiata (L.) R. Wilczek]. Front Genet. 12 March:1–12. DOI:10.3389/fgene.2021.642518.
Kozlov K, Sokolkova A, Lee CR, Ting CT, Schafleitner R, Bishop-von Wettberg E, Nuzhdin S, Samsonova M. 2020. Dynamical climatic model for time to flowering in Vigna radiata. BMC Plant Biol. 20 Suppl 1:1–15. DOI:10.1186/s12870-020-02408-1.
Li S, Ding Y, Zhang D, Wang X, Tang X, Dai D, Jin H, Lee SH, Cai C, Ma J. 2018. Parallel domestication with a broad mutational spectrum of determinate stem growth habit in leguminous crops. Plant J. 96(4):761–771. DOI:10.1111/tpj.14066.
Liu C, Wang Y, Peng J, Fan B, Xu D, Wu J, Cao Z, Gao Y, Wang X, Li S, et al. 2022. High-quality genome assembly and pan-genome studies facilitate genetic discovery in mung bean and its improvement. Plant Commun. 3(6):100352. DOI:10.1016/j.xplc.2022.100352.
Mamo W, Enyew M, Mekonnen T, Tesfaye K, Feyissa T. 2023. Genetic diversity and population structure of sorghum [Sorghum bicolor (L.) Moench] genotypes in Ethiopia as revealed by microsatellite markers. Heliyon. 9(1):e12830. DOI:10.1016/j.heliyon.2023.e12830.
Marwiyah S, Sutjahjo SH, Trikoesoemaningtyas, Wirnas D, Suwarno WB. 2021. High nonadditive gene action controls synchronous maturity in mung beans. Sabrao J Breed Genet. 53(2):213–227. DOI: https://doi.org/10.54910/sabrao2021.54.1
Mascitelli A, Bombi P, Coletta V, Cinti B De, Federico S, Matteucci G, Mazzoni A, Muzzini VG, Petenko I, Dietrich S. 2019. Tree motion: Following the wind-induced swaying of an arboreous individual using a GNSS receiver. Ital J Agrometeorol. 2019(3):25–36. DOI:10.13128/ijam-512.
Nair RM, Schafleitner R, Kenyon L, Srinivasan R, Easdown W, Ebert AW, Hanson P. 2012. Genetic improvement of mungbean. Sabrao J Breed Genet. 44(2):177–190.
Nasrollahzadeh F, Roman L, Skov K, Jakobsen LMA, Trinh BM, Tsochatzis ED, Mekonnen T, Corredig M, Dutcher JR, Martinez MM. 2023. A comparative investigation of seed storage protein fractions: The synergistic impact of molecular properties and composition on anisotropic structuring. Food Hydrocoll. 137 October 2022:108400. DOI:10.1016/j.foodhyd.2022.108400.
Nikolova I, Georgieva N. 2017. Banats Journal of Biotechnology OM NeemAzal–T/S and Pyrethrum and their effect on the pea pests and seed quality. May:4738–12. DOI:10.7904/2068.
Oliya BK, Maharjan L, Pant B. 2023. Genetic diversity and population structure analysis of Paris polyphylla Sm. revealed by the SSR marker. Heliyon. 9(7):e18230. DOI:10.1016/j.heliyon.2023.e18230
Pataczek L, Zahir ZA, Ahmad M, Rani S, Nair R, Schafleitner R, Cadisch G, Hilger T. 2018. Beans with Benefits—The Role of Mungbean (<i>Vigna radiate</i>) in a Changing Environment. Am J Plant Sci. 09(07):1577–1600. DOI:10.4236/ajps.2018.97115.
Patel JD. 2019. Characterization of Mung bean (Vigna radiata L. Wilczek) Genotypes Based on Plant Morphology. Int J Pure Appl Biosci. 7(5):433–443. DOI:10.18782/2320-7051.7793.
Rodas AL, Roque E, Hamza R, Gómez-Mena C, Beltrán JP, Cañas LA. 2023. SUPERMAN strikes again in legumes. Front Plant Sci. 14 January:1–7. DOI:10.3389/fpls.2023.1120342.
Rodríguez O, Bech J, De Dios Soriano J, Gutiérrez D, Castán S. 2020. A methodology to conduct wind damage field surveys for high-impact weather events of convective origin. Nat Hazards Earth Syst Sci. 20(5):1513–1531. DOI:10.5194/nhess-20-1513-2020..
Savi? A, Pipan B, Vasi? M, Megli? V. 2021. Genetic diversity of common bean (Phaseolus vulgaris L.) germplasm from Serbia, as revealed by single sequence repeats (SSR). Sci Hortic (Amsterdam). 288 November 2020. DOI:10.1016/j.scienta.2021.110405.
Sahoo JP, Mishra AP, Mishra D, Samal KC. 2020. Nutrient-Rich Beans with Benefit (Vigna radiata (L.) Wilczek): A Review. Int J Curr Microbiol Appl Sci. 9(8):3280–3289. DOI:10.20546/ijcmas.2020.908.375.
Shrestha S, van ’t Hag L, Haritos V, Dhital S. 2023. Comparative study on molecular and higher-order structures of legume seed protein isolates: Lentil, mungbean and yellow pea. Food Chem. 411 December 2022:135464. DOI:10.1016/j.foodchem.2023.135464.
Singh H, Singh G. 2015. Growth, phenology, and thermal indices of mung bean as influenced by sowing time, varieties, and planting geometry. Indian J Agric Res. 49(5):472–475. DOI:10.18805/ijare.v49i5.5815.
Singh L, Nanjundan J, Sharma D, Singh KH, Parmar N, Jain R, Thakur AK. 2022. Agro-morphological traits and SSR markers reveal genetic variations in germplasm accessions of Indian mustard – An industrially important oilseed crop. Heliyon. 8(12):e12519. DOI:10.1016/j.heliyon.2022.e12519.
Somta P, Laosatit K, Yuan X, Chen X. 2022. Thirty Years of Mung bean Genome Research: Where Do We Stand and What Have We Learned? Front Plant Sci. 13 July. DOI:10.3389/fpls.2022.944721.
Sunayana, Yadav R, Punia MS, Ravika. 2017. Genetic divergence studies in mung bean (Vigna radiata L. Wilczek) using morpho-physio and molecular markers to identify drought tolerant genotypes. Indian J Genet Plant Breed. 77(4):574–578. DOI:10.5958/0975-6906.2017.00076.1.
Tabasum A, Hameed A, Asghar MJ. 2020. Exploring the Genetic Divergence in Mung bean (Vigna radiata L.) Germplasm Using Multiple Molecular Marker Systems. Mol Biotechnol. 62(11–12):547–556. DOI:10.1007/s12033-020-00270-y.
Talukdar N, Borah HK, Sarma RN. 2020. Genetic Variability of Traits Related to Synchronous Maturity in Greengram [Vigna radiata (L.) Wilczek]. Int J Curr Microbiol Appl Sci. 9(1):1120–1133. DOI:10.20546/ijcmas.2020.901.126.
Thakur AK, Singh KH, Singh L, Nanjundan J, Khan YJ, Singh D. 2017. Patterns of subspecies genetic diversity among oilseed Brassica rapa as revealed by agro-morphological traits and SSR markers. J Plant Biochem Biotechnol. 26(3):282–292. DOI:10.1007/s13562-016-0390-6.
Thermo Scientific. 2016. NanoDrop One User Guide. Thermo Sci NanoDrop One User Guid. Revision B July 18–19.
Topu M, Sesiz U, Bekta? H, Toklu F, Özkan H. 2023. Next-Generation-Sequencing-Based Simple Sequence Repeat (SSR) Marker Development and Linkage Mapping in Lentil (Lens culinaris L.). Life. 13(7):1–13. DOI:10.3390/life13071579.
Tripathy P, Das AB. 2021. Morphological and molecular diversity of black gram germplasm collected from Odisha. Ecol Genet Genomics. 20 May:100088. DOI:10.1016/j.egg.2021.100088.
Trustinah, Radjit BS, Prasetiaswati N, Harnowo D. 2015. Adopsi varietas unggul kacang hijau di sentra produksi. Iptek Tanam Pangan. 9(1):24–38.
Ullah H, Khalil IH, Lightfoot DA, Durr-E-Nayab, Imdadullah. 2012. Selecting mung bean genotypes for fodder production on the basis of degree of indeterminacy and biomass. Pakistan J Bot. 44(2):697–703.
Van Haeften S, Dudley C, Kang Y, Smith D, Nair RM, Douglas CA, Potgieter A, Robinson H, Hickey LT, Smith MR. 2023. Building a better Mungbean: Breeding for reproductive resilience in a changing climate. Food Energy Secur. February:1–18. DOI:10.1002/fes3.467.
Vieira MLC, Santini L, Diniz AL, Munhoz C de F. 2016. Microsatellite markers: What they mean and why they are so useful. Genet Mol Biol. 39(3):312–328. DOI:10.1590/1678-4685-GMB-2016-0027.
Vieira RF, Carneiro JES, De Paula TJ, Araújo RF. 2008. MGS Esmeralda: New large seed mung bean cultivar. Pesqui Agropecu Bras. 43(6):781–782. DOI:10.1590/S0100-204X2008000600015.
Wang L, Wang S, Luo G, Zhang J, Chen Y, Chen H, Cheng X. 2022. Evaluation of the Production Potential of Mung Bean Cultivar “Zhonglv 5.” Agronomy. 12(3):1–7. DOI:10.3390/agronomy12030707.
Watts GS. 2017. Interpreting Nanodrop (Spectrophotometric) Results. http://www.u.arizona.edu/~gwatts/azcc/InterpretingSpec.pdf.
Yanti, Vanessa V, Lay CEP and BW. 2023. Branched Chain Amino Acid Content and Antioxidant Oral Nutrition Supplements. DOI.org/10.3390/foods12142789
Yi-Shen Z, Shuai S, Fitzgerald R. 2018. Mung bean proteins and peptides: Nutritional, functional and bioactive properties. Food Nutr Res. 62:1–11. DOI:10.29219/fnr.v62.1290.
Zavinon F, Adoukonou-Sagbadja H, Keilwagen J, Lehnert H, Ordon F, Perovic D. 2020. Genetic diversity and population structure in Beninese pigeon pea [Cajanus cajan (L.) Huth] landraces collection revealed by SSR and genome-wide SNP markers. Genet Resour Crop Evol. 67(1):191–208. DOI:10.1007/s10722-019-00864-9.
Zhang M, Wang X. 2022. Development of polymorphic SSR primers and fingerprint construction of Ailanthus altissima var. erythrocarpa. PPR: PPR481118. Preprint v1. DOI.org/10.21203/rs.3.rs-1508126/v1
Zhang Q, Xu J, Crane M, Luo C. 2022. See the wind: Wind scale estimation with optical flow and VisualWind dataset. Sci Total Environ. 846 June:157204. DOI:10.1016/j.scitotenv.2022.157204.

Most read articles by the same author(s)

1 2 > >>