Morphological variability and cluster analysis of 16 bambara groundnut (Vigna subterranea) genotypes

##plugins.themes.bootstrap3.article.main##

MUHAMMAD FAUZAN FARID AL HAMDI
SATRIYAS ILYAS
ABDUL QADIR
SEAN MAYES

Abstract

Abstract. Hamdi MFFA, Ilyas S, Qadir A, Mayes S. 2024. Morphological variability and cluster analysis of 16 bambara groundnut (Vigna subterranea) genotypes. Biodiversitas 25: 97-106. Identifying morphological and germination characters in bambara groundnut (Vigna subterranea (L.) Verdc.) is important to determine the advantages and disadvantages of several genotypes. This study aimed to identify the characteristics of 16 bambara groundnut genotypes based on morphological markers, NDVI score, and germination variables. This study was conducted in Sumedang, West Java, Indonesia in March-July 2018. The experiment was arranged in a randomized complete block design with one factor: genotype, which consisted of 16 genotypes originating from Indonesia and Africa. The NDVI score did not affect the yield produced. Tiga Nicuru, DodR-R II, M-14 Gresik, Black Sukabumi, and Black Madura were the genotypes with the highest germination speed, while LunT was the lowest. Cluster analysis showed that bambara groundnut genotypes are classified into 4 clusters. The first cluster belongs to Sumedang and Sukabumi, the second belongs to Gresik, Madura, and Tasikmalaya, the third comes from West Africa (LunT and Tiga Nicuru), and the fourth comes from East Africa (IITA 686 and DodR-R II) and Southern Africa (S 19-3, Uniswa R and Uniswa R/G). The low similarity (28%) between genotypes from Indonesia and Africa shows that there are many differences in morphological characteristics. This high diversity is beneficial for creating superior cultivars.

##plugins.themes.bootstrap3.article.details##

References
Alhamdi MFF, Setiawan A, Ilyas S, Ho WK. 2020. Genetic variability of Indonesian landraces of Vigna subterranea: morphological characteristics and molecular analysis using SSR markers. Biodiversitas 21(9): 3929-3937. DOI: 10.13057/biodiv/d210902.
Amaral LR, Molin JP, Portz G, Finazzi FB, Cortinove L. 2014. Comparison of crop canopy reflectance sensors used to identify sugarcane biomass and nitrogen status. Precision Agric 16: 15-28. DOI: 10.1007/s11119-014-9377-2.
Barker III J, Zhang N, Sharon J, Steeves R, Wang X, Wei Y, Poland J. 2016. Development of a field-based high-throughput mobile phenotyping platform. Computers and Electronics in Agriculture 122: 74–85. DOI: 10.1016/j.compag.2016.01.017.
Department: Agriculture, Forestry and Fisheries Republic of South Africa. 2016. Production Guideline: Bambara Groundnut (Vigna subterranea). Department: Agriculture, Forestry and Fisheries Republic of South Africa, South Africa.
Fatimah S, Arifin, Ardiarini NR, Kuswanto. 2018. Genetic diversity of Madurese bambara groundnut (Vigna subterranea (L.) Verdc.) lines based on morphological and RAPD markers. SABRAO J Breed Genet 50: 101–114.
Feldman A, Ho WK, Massawe F, Mayes S. 2019. Bambara Groundnut is a Climate-Resilient Crop: How Could a Drought-Tolerant and Nutritious Legume Improve Community Resilience in the Face of Climate Change? In: Sarkar A, Sensarma S, vanLoon G. (eds) Sustainable Solutions for Food Security. Springer, Cham. DOI: 10.1007/978-3-319-77878-5_8.
Fitriesa S, Ilyas S, Qadir A. 2016. Invigorasi dan pengurangan pupuk N untuk meningkatkan pertumbuhan, hasil dan mutu benih kacang bambara. J. Agron. Indonesia 44 (2), 190 – 196. DOI: 10.24831/jai.v44i2.13489. [Indonesian]
Gbaguidi AA, Dansi A, Dossou-Aminon I, Gbemavo DSJC, Orobiyi A, Sanoussi F, Yedomonhan H. 2018. Agromorphological diversity of local Bambara groundnut (Vigna subterranea (L.) Verdc.) collected in Benin. Genet Resour Crop Evol 65: 1159–1171. DOI: 10.1007/s10722-017-0603-4.
Gonne S, Felix-Alain W, Benoit KB. 2013. Assessment of twenty bambara groundnut (Vigna subterranea (l.) Verdcourt) landraces using quantitative morphological traits. International Journal of Plant Research 3(3): 39-45. DOI: 10.5923/j.plant.20130303.04.
Halimi RA, Barkla BJ, Mayes S, King GJ. 2019. The potential of the underutilized pulse bambara groundnut (Vigna subterranea (L.) Verdc.) for nutritional food security. J Food Compos Anal. 77: 47–59. DOI: 10.1016/j.jfca.2018.12.008.
Hasan M, Uddin MK, Mohamed MTM, Zuan ATK. 2018. Nitrogen and phosphorus management for Bambara groundnut (Vigna
subterranea) production-A review. Legume Research 41(4): 483-489. DOI: 10.18805/LR-379.
Hlanga N, Modi A, Mathew I. 2022. Agro-morphological diversity of Bambara groundnut lines evaluated under field conditions. South African Journal of Plant and Soil 39(2): 1–11. DOI: 10.1080/02571862.2022.2037165.
Ilyas S, Sopian O. 2013. Effect of seed maturity and invigoration on seed viability and vigor, plant growth, and yield of bambara groundnut (Vigna subterranean (L.) Verdcourt). Acta Hort 979: 695-702. DOI: 10.17660/ActaHortic.2013.979.78.
ISTA. 2014. International rules for seed Testing. The International Seed Testing Association (ISTA), Bassersdorf.
Khaliqi A, Rafii MY, Mazlan N, Jusoh M, Oladosu Y. 2021. Genetic analysis and selection criteria in bambara groundnut
accessions-based yield performance. Agronomy 11: 1634. DOI: 10.3390/agronomy11081634.
Khan MMH, Rafii MY, Ramlee SI, Jusoh M, Mamun MA. 2021. Genetic analysis and selection of Bambara groundnut (Vigna subterranea [L.] Verdc.) landraces for high yield revealed by qualitative and quantitative traits. Sci Rep 11: 7597. DOI: 10.1038/s41598-021-87039-8.
Khan MMH, Rafii MY, Ramlee SI, Jusoh M, Mamun MA. 2022. Path coefficient and correlation analysis in Bambara groundnut
(Vigna subterranea [L.] Verdc.) accessions over environments. Sci Rep 12: 245. DOI: 10.1038/s41598-021-03692-z.
Kundy AC, Mayes S, Msanya B, Ndakidemi P, Massawe F. 2023. Building Resilient Crop Production Systems for Drought-Prone Areas—A Case for Bambara Groundnut (Vigna subterranea L. Verdc) and Groundnut (Arachis hypogaea L.). Agronomy 13: 383. DOI: 10.3390/agronomy13020383.
Mabhaudhi T, Modi AT, Beletse YG. 2013. Growth, phenological, and yield responses of a bambara groundnut accession to imposed water stress: II. Rain shelter conditions. Water SA. 39(2): 191-198. DOI: 10.4314/wsa.v39i2.2.
Majola NG, Gerrano AS, Shimelis A. 2021. Bambara groundnut (Vigna subterranea [L.] Verdc.) production, utilisation and genetic improvement in Sub-Saharan Africa. Agronomy 11: 1345. DOI: 10.3390/agronomy11071345.
Mateva KI, Tan XL, Halimi RA, Chai HH, Makonya GM, Gao X, Shayanowako AIT, Ho WK, Tanzi AS, Farrant J, Mabhaudhi T, King GJ, Mayes S, Massawe F. 2023. Chapter 21 - Bambara groundnut (Vigna subterranea (L.) Verdc.). In: Farooq M, Siddique KHM (eds) Neglected and Underutilized Crops. Academic Press, Cambridge. DOI: 10.1016/B978-0-323-90537-4.00021-1.
Mayes S, Ho WK, Chai HH, Gao X, Kundy AC, Mateva KI, Zahrulakmal M, Hahiree MKIM, Kendabie P, Licea LCS, Massawe F, Mabhaudhi T, Modi AT, Berchie JN, Amoah S, Faloye B, Abberton M, Olaniyi O, Azam-Ali SN. 2019. Bambara groundnut: an exemplary underutilised legume for resilience under climate change. Planta 250: 803–820. DOI: 10.1007/s00425-019-03191-6.
Miya SP, Modi AT. 2017. Overcoming the physical seed dormancy in bambara groundnut (Vigna subterranea L.) by scarification: A seed quality study. J Agric Sci Technol B 7: 13-24. DOI: 10.17265/2161-6264/2017.01.002.
Molosiwa OO, Aliyu S, Stadler F, Mayes K, Massawe F, Kilian A, Mayes S. 2015. SSR marker development, genetic diversity, and population structure analysis of Bambara groundnut [Vigna subterranea (L.) Verdc.] landraces. Genet Resour Crop Evol 62: 1225–1243. DOI: 10.1007/s10722-015-0226-6.
Olanrewaju OS, Oyatomi O, Babalola OO, Abberton M. 2022. Breeding potentials of Bambara groundnut for food and nutrition security in the face of climate change. Front. Plant Sci. 12: 798993. DOI: 10.3389/fpls.2021.798993.
Pretorius ZA, Lan CX, Prins R, Knight V, McLaren NW, Singh RP, Bender CM, Kloppers FJ. 2016. Application of remote sensing to identify adult plant resistance loci to stripe rust in two bread wheat mapping populations. Precision Agric 18: 411–428. DOI 10.1007/s11119-016-9461-x.
Rahmah NI, Ilyas S, Setiawan A. 2020. Evaluation of bambara groundnut (Vigna subterranea L. Verdc.) genotypes for drought tolerance at the germination stage. SABRAO Journal of Breeding and Genetics 52 (1): 45-63.
Sari M, Ilyas S, Suhartanto MR, Qadir A. 2021. Pre-harvest sprouting on high-level seed dormancy of bambara groundnut (Vigna subterranea) landraces. Biodiversitas 22 (12): 5617-5623. DOI: 10.13057/biodiv/d221247.
Siise A, Massawe FJ. 2012. Microsatellites based marker molecular analysis of Ghanian Bambara groundnut (Vigna subterranea (L.) Verdc.) landraces alongside morphological characterization. Genet Resour Crop Evol 60: 777-787. DOI: 10.1007/s10722-012-9874-y.
Smykal P, Vernoud V, Blair MW, Soukup A, Thompson RD. 2014. The role of the testa during development and in the establishment of dormancy of the legume seed. Front. Plant Sci 5: 351. DOI: 10.3389/fpls.2014.00351.
Sobari E, Wicaksana N. 2017. Genetic diversity and relationship of bambara groundnut (Vigna subterranean L.) genotype landraces of West Java. Jurnal Agro 4 (2): 90-96. DOI: 10.15575/biodjati.v6i1.6538. [Indonesian]
Sultana SR, Ali A, Ahmad A, Mubeen M, Zia-Ul-Haq M, Ahmad S, Ercisli S, Jaafar HZE. 2014. Normalized difference vegetation index as a tool for wheat yield estimation: a case study from Faisalabad, Pakistan. The Scientific World Journal 2014: 725326. DOI: 10.1155/2014/725326.
Sweeney DW, Diaz DR. 2015. Response of Wheat to Residual Fertilizer Nitrogen Applied to Previously Failed Corn. Kansas Agricultural Experiment Station Research Reports 1(3). DOI: 10.4148/2378-5977.1011.
Unigwe AE, Gerrano AS, Adebola P, Pillay M. 2016. Morphological variation in selected accessions of Bambara groundnut (Vigna subterranea L. Verdc) in South Africa. Journal of Agricultural Science8(11). DOI: 10.5539/jas.v8n11p69.
Wang J, Badenhorst P, Phelan A, Pembleton L, Shi F, Cogan N, Spangenberg G, Smith K. 2019. Using sensors and unmanned aircraft systems for highthroughput phenotyping of biomass in perennial ryegrass breeding trials. Frontiers in Plant Sciences 10: 1381. DOI: 10.3389/fpls.2019.01381.
Weller JL, Ortega R. 2015. Genetic control of flowering time in legumes. Front. Plant Sci. 6:207. DOI: 10.3389/fpls.2015.00207.

Most read articles by the same author(s)