Systematic assessment of salt tolerance based on morpho-physiological traits and genes related in inbred rice lines at the seedling stage

##plugins.themes.bootstrap3.article.main##

RENY HERAWATI
https://orcid.org/0000-0003-1093-6681
MARULAK SIMARMATA
MASDAR
BAMBANG S. PURWOKO
MISWATI

Abstract

Abstract. Herawati R, Simarmata M, Masdar, Purwoko BS, Miswati. 2023. Systematic assessment of salt tolerance based on morpho-physiological traits and genes related in inbred rice lines at the seedling stage. Biodiversitas 24: 6256-6267. Salinity stress is an abiotic constraint that limits rice productivity. Salinity-tolerant traits are very complex and involve many genes. Therefore, it is difficult to conclude how rice plants respond to salinity stress. This study aimed to investigate the genetic potential of 19 rice genotypes for salt tolerance as well as the quantitative impacts of varying salinity stress levels on a subset of the genotypes. Salinity tolerance is identified in two stages: assessing salinity stress in nutrient solutions using 0, 5,000 (EC 7.8 dS.m-1), and 10,000 ppm (EC 15.62 dS.m-1). Gene expression analysis detected genes controlling salinity stress tolerance using two pairs of specific primers: DST (Drought Salt Tolerance) and OsAPX (ascorbate peroxidase). The results showed that all lines could survive high salinity stress up to EC 7.8 dS.m-1. Biplot is reflected in K-means grouping the 21 rice genotypes into three major groups, namely salt-sensitive (1 genotype, 4.75%), moderately salt-tolerant (2 genotypes, 9.5%), and salt-tolerant-very tolerant (18 genotypes, 85.7%). The DST and OsAPX1 genes showed both genes were expressed under salinity stress, although some lines showed smears or even did not appear at all, namely in G3 and G7. This result is consistent with the PCA analysis, where genotypes G3 and G7 are categorized as moderately tolerant. This study reveals that screening at the seedling stage combined with marker-assisted selection can identify tolerant genotypes. Furthermore, conducting field trials on soil salinity with EC > 4 dS.m-1 is recommended to obtain salinity-tolerant lines as potential new varieties.

##plugins.themes.bootstrap3.article.details##

References
Al Murad M and Muneer S. 2023. Physiological and Molecular Analysis Revealed the Role of Silicon in Modulating Salinity Stress in Mung Bean. Agriculture 13, 1493. DOI:10.3390/agriculture13081493
Ashraf M, Shahzad SM, Imtiaz M, and Rizwan MS. 2018. Salinity effects on nitrogen metabolism in plants – focusing on the activities of nitrogen metabolizing enzymes: A review, Journal of Plant Nutrition 41(8):1065-1081. DOI: 10.1080/01904167.2018.1431670
Bañón D, Alarcón JJ, Sánchez-Blanco MJ, Ortuño MF, Bañón S, Lorente B, Ochoa J. 2022. Response of Potted Hebe andersonii to Salinity under an Efficient Irrigation Management. Agronomy 12, 1696. DOI:10.3390/agronomy12071696
Cardon GE, Davis SJ, Bauder TA, and Waskom RM. 2012. Managing Saline Soils. http://www.ext. colostate. edu/pubs/crops. html. Accessed on June 2, 2022..
Das K and Roychoudhurry A. 2014. Reactive Oxygen Species (ROS) and Response of Antioxidants as ROS-scavengers During Environmental Stress in Plants. Frontiers in Environmental Science 2: 1-13. DOI:10.3389/fenvs.2014.00053
Evans L. 2006. Salinity Tolerance in Irrigated Crops. http://www. dpi. nsw. gov. au/agriculture/resources/ soils/salinity/crops/tolerance-irrigated. Accessed on October 23, 2022.
Elhakem AH. 2020. Growth, Water Relations, and Photosynthetic Activity Are Associated with Evaluating Salinity Stress Tolerance of Wheat Cultivars. International Journal of Agronomy 8882486, 9. DOI:10.1155/2020/8882486
Fernandez GC. 1993. Effective Selection Criteria for Assessing Plant Stress Tolerance. Adaptation of Food Crops to Temperature and Water Stress 13–181992257270.
Gregorio GB, Senadhira D, and Mendoza RD. 1997. IRRl Discussion Paper Series No. 22. Plant Breeding, Genetics, and Biochemistry Division, International Rice Research Institute.
Galkanda-Arachchige HSC, Roy LA, Davis DA. 2021. The effects of magnesium concentration in low-salinity water on growth of Pacific white shrimp (Litopenaeus vannamei). Aquaqulture Research 52(2): 589-597. DOI:10.1111/are.14916
Hossain MM, Miah MNA, Rahman MA, Islam MA, and Islam MT. 2008. Effect of salt stress on growth and yield attributes of mungbean. Bangladesh Res. Pub. J. 1(4):324–336.
Huang L, Wang Y, Wang W, Zhao X, Qin Q, Sun F, Hu F, Zhao Y, Li Z, Fu B, and Li Z. 2018. Characterization of Transcription Factor Gene OsDRAP1 Conferring Drought Tolerance in Rice. Front. Plant Sci. 9(94):1-15. DOI:10.3389/fpls.2018.00094
Herawati R, Alnopri, Masdar, Simarmata M, Sipriyadi, and Sutrawati M. 2021. Identification of drought tolerant markers, DREB2A and BADH2 genes, and yield potential from single-crossing varieties of rice in Bengkulu, Indonesia. Biodiversitas 22(2), 785-793. DOI:10.13057/biodiv/d220232
Hao S, Wang Y, Yan Y, Liu Y, Wang J, Chen S. 2021. A Review on Plant Responses to Salt Stress and Their Mechanisms of Salt Resistance. Horticulturae 7, 132. DOI:10.3390/horticulturae7060132
Hu D, Li R, Dong S et al. 2022. Maize (Zea mays L.) responses to salt stress in terms of root anatomy, respiration and antioxidative enzyme activity. BMC Plant Biol. 22, 602. DOI: 10.1186/s12870-022-03972-4
Huqe MAS, Haque MS, Sagar A, Uddin MN, Hossain MA, Hossain AZ, Rahman MM, Wang X, Al-Ashkar I, Ueda A et al. 2021. Characterization of Maize Hybrids (Zea mays L.) for Detecting Salt Tolerance Based on Morpho-Physiological Characteristics, Ion Accumulation and Genetic Variability at Early Vegetative Stage. Plants 10, 2549. DOI:10.3390/plants10112549
Indonesia Statistics Center Agency (BPS). 2014. Agricultural Land Statistics 2009-2013, Agricultural Data and Information System Center.[Indonesia]
Ismail AM, Heuer S, Thomson MJ, Wissuwa M. 2007. Genetic and genomic approaches to develop rice germplasm for problem soils. Plant Mol. Biol. 65: 547–570. DOI:10.1007/s11103-007-9215-2
Ismail AM, Horie T. 2017. Genomics, physiology, and molecular breeding approaches for improving salt tolerance. Annu. Rev. Plant Biol. 68:405–434. DOI: 10.1146/annurev-arplant-042916-040936
Joshi S, Nath J, Singh AK, Pareek A, Joshi R. 2022. Ion transporters and their regulatory signal transduction mechanisms for salinity tolerance in plants. Physiologia Plantarum, 174(3), e13702. DOI:10.1111/ppl.13702
Katuwal KB, Xiao B, Jespersen D. 2020. Physiological responses and tolerance mechanisms of seashore paspalum and centipedegrass exposed to osmotic and iso-osmotic salt stresses, Journal of Plant Physiology, 248, 153154, DOI:10.1016/j.jplph.2020.153154.
Kim Y, BG Mun, AL Khan, M. Wagas, H.H. Kim, R. Shahzad, M. Imran, BW. Yun, and IJ Lee. 2018. Regulation of reactive oxygen and Nitrogen species by salicylic acid in rice under salinity stress conditions. Plos One. 13(3):1-20. DOI: 10.1371/journal.pone.0192650
Kameoka T, Okayasu T, Kikuraku K, Ogawa T, Sawa Y, Yamamoto H, Ishikawa T, Maruta T. 2021. Cooperation of chloroplast ascorbate peroxidases and proton gradient regulation 5 is critical for protecting Arabidopsis plants from photo-oxidative stress. The Plant Journal 107(3): 876-892. DOI:10.1111/tpj.15352
Khan MN, Siddiqui MH, Mukherjee S, Alamri S, Al-Amri AA, Alsubaie QD, Al-Munqedhi BMA, Ali HM. 2021. Calcium-hydrogen sulfide crosstalk during K+-deficient NaCl stress operates through regulation of Na+/H+ antiport and antioxidative defense system in mung bean roots, Plant Physiology and Biochemistry 159: 211-225. DOI:10.1016/j.plaphy.2020.11.055.
Kwon OK, Mekapogu M, and Kim KS. 2019. Effect of salinity stress on photosynthesis and related physiological responses in carnation (Dianthus caryophyllus). Hortic. Environ. Biotechnol. 60:831–839. DOI:10.1007/s13580-019-00189-7
Li R, Zheng W, Ruifang Y, Hu Q, Ma L, and Zhang H. 2022. OsSGT1 promotes melatonin?ameliorated seed tolerance to chromium stress by affecting the OsABI5–OsAPX1 transcriptional module in rice. The Plant Journal, 112(1):151-171. DOI:10.1111/tpj.15937
Liu XX, Zhu YX, Fang XZ, Ye JY, Du WX, Zhu QY, Lin XY, Jin CW . 2020. Ammonium aggravates salt stress in plants by entrapping them in a chloride over-accumulation state in an NRT1.1-dependent manner, Science of The Total Environment 746, 141244. DOI:10.1016/j.scitotenv.2020.141244
Lê S, Josse J, and Husson F. 2008. FactoMineR: An R package for multivariate analysis. Journal of Statistical Software 25, 1–18. DOI:10.18637/jss.v025.i01
Lim SD, Kim JH, Lee J, Hwang SG, Shim SH, Jeon JS, Jang CS. 2022. Role of OsCZMT1 in Na+ and Mg2+ transport and salinity insensitivity. Environmental and Experimental Botany 194,104754. DOI:10.1016/j.envexpbot.2021.104754.
Mohammadi M, Pouryousef M, Farhang N. 2023. Study on germination and seedling growth of various ecotypes of fennel (Foeniculum vulgare Mill.) under salinity stress. Journal of Applied Research on Medicinal and Aromatic Plants, 34, 100481. DOI:10.1016/j.jarmap.2023.100481.
Melo JLM, Feitosa JPA, Mota JCA, dos Santos Dias CT, de Lacerda CF, Simmons R, and Costa MCG. 2023. Can a superabsorbent polymer synthesised a CaCO3 based biofiller improve soil and plant available water and crop growth under salt stress?.Archives of Agronomy and Soil Science 69(14):3375-3387. DOI: 10.1080/03650340.2023.2237899
Monsur MB, Datta J, Rohman Md.M, Hasanuzzaman M, Hossain A, Islam MS et al. 2022. Saline Toxicity and Antioxidant Response in Oryza sativa: An Updated Review. In: Hasanuzzaman, M., Ahammed, G.J., Nahar, K. (eds) Managing Plant Production Under Changing Environment. Springer, Singapore. DOI:10.1007/978-981-16-5059-8_4
Nawaz M, Ashraf MY, Khan A et al. 2021. Salicylic Acid– and Ascorbic Acid–Induced Salt Tolerance in Mung bean (Vigna radiata (L.) Wilczek) Accompanied by Oxidative Defense Mechanisms. J Soil Sci Plant Nutr. 21:2057–2071. DOI:10.1007/s42729-021-00502-3
Nahar S, Kalita J, Sahoo L, Tanti B. 2016. Morphophysiological and molecular effects of drought stress in rice. Ann Plant Sci 5: 1409–1416. DOI:10.21746/aps.2016.09.001
Nahar S, Vemireddy LR, Sahoo L, Tanti B. 2018. Antioxidant protection mechanisms reveal significant response in drought-induced oxidative stress in some traditional rice of Assam, India. Rice Sci. 25:185–196. DOI:10.1016/j.rsci.2018.06.002
Naveed M, Sajid H, Mustafa A, Niamat B, Ahmad Z, Yaseen M, Kamran M, Rafique M, Ahmar S, and Chen JT. 2020. Alleviation of Salinity-Induced Oxidative Stress, Improvement in Growth, Physiology and Mineral Nutrition of Canola (Brassica napus L.) through Calcium-Fortified Composted Animal Manure. Sustainability 12, 846. DOI:10.3390/su12030846
Naheed R, Aslam H, Kanwal H, Farhat F, Gamar MIA, Al-Mushhin AAM, Jabborova D, Ansari MJ, Shaheen S, Aqeel M, Noman A, Hessini K. 2021. Growth attributes, biochemical modulations, antioxidant enzymatic metabolism and yield in Brassica napus varieties for salinity tolerance. Saudi Journal of Biological Sciences. 28(10):5469-5479. DOI: 10.1016/j.sjbs.2021.08.021.
Negrão S, Schmöckel SM, Tester M. 2017. Evaluating physiological responses of plants to salinity stress. Ann Bot 119:1–11. DOI: 10.1093/aob/mcw191
X. Nxele, A. Klein, B.K. Ndimba. 2017. Drought and salinity stress alters ROS accumulation, water retention, and osmolyte content in sorghum plants. South African Journal of Botany, 108: 261-266 261-266 261-266. DOI:10.1016/j.sajb.2016.11.003
Prodjinoto H, Irakoze W, Gandonou C et al. 2021. Discriminating the impact of Na+ and Cl? in the deleterious effects of salt stress on the African rice species (Oryza glaberrima Steud.). Plant Growth Regul. 94, 201–219. DOI:10.1007/s10725-021-00709-5
Ravelombola WS, Shi A, Weng Y, Clark J, Motes D, Chen P, and Srivastava V. 2017 Evaluation of salt tolerance at germination stage in cowpea [Vigna unguiculata (L.) Walp]. HortScience. 52(9):1168-1176. DOI:10.21273/HORTSCI12195-17
Rossatto T, do Amaral MN, cia Carvalho Benitez L, Vighi IL, Braga EJB, de Magalhaes Junior AM, Maia MAC, da Silva Pinto L. 2017. Gene Expression and Activity of Antioxidant Enzymes in Rice Plants, cv. BRS AG, under Saline Stress. Physiol. Mol. Biol Plants 23(4): 865–875. DOI: 10.1007/s12298-017-0467-2.
R Core Team. 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
Sandhya J, Ashwini T, Manisha R, Vinodha M, and Srinivas A. 2021. Drought Tolerance Enhancement with Co-Overexpression of DREB2A and APX in Indica Rice (Oryza sativa L.). American Journal of Plant Sciences 12, 234-258. DOI:10.4236/ajps.2021.122014
Shen C, Zhang Y, Li QX, Liu S, An Y, An Y et al. 2021. PdGNC confers drought tolerance by mediating stomatal closure resulting from no and h 2 o 2 production via the direct regulation of pdhxk1 expression in populus. New Phytologist 230(5):1868-1882. DOI:10.1111/nph.17301
Sarwar AG, Tinne FJ, Islam N, Islam MM, and Haque MS. 2022. Effects of salt stress on growth and accumulation of Na+, K+ And Ca2+ ions in different accessions of Sesbania. Bangladesh J. Bot. 51(1): 157-167. DOI: DOI:10.3329/bjb.v51i1.58832
Singh SK, Kakani VG, Brand D, Baldwin B, Reddy KR. 2008. Assessment of cold and heat tolerance of winter-grown canola (Brassica napus L.) cultivars by pollen-based parameters. J. Agron. Crop Sci. 194:225–236. DOI:10.1111/j.1439-037X.2008.00309.x
Singh M, Singh VP, Prasad SM. 2016. Responses of photosynthesis, nitrogen and proline metabolism to salinity stress in Solanum lycopersicum under different levels of nitrogen supplementation. Plant Physiology and Biochemistry 109:72-83, DOI:10.1016/j.plaphy.2016.08.021.
Sadak MS, Abd El-Hameid AR, Zaki FSA, Dawood MG, and El-Awadi ME. 2020. Physiological and biochemical responses of soybean (Glycine max L.) to cysteine application under sea salt stress. Bulletin of the National Research Centre, 44:1-10. DOI:10.1186/s42269-019-0259-7
Simkin AJ, Kapoor L, Doss CGP, Hofmann TA, Lawson T, Ramamoorthy S. 2022. The role of photosynthesis related pigments in light harvesting, photoprotection and enhancement of photosynthetic yield in planta. Photosynth Res.152(1):23-42. DOI: 10.1007/s11120-021-00892-6.
Sofy MR, Elhawat N, Alshaal T. 2020. Glycine betaine counters salinity stress by maintaining high K+/Na+ ratio and antioxidant defense via limiting Na+ uptake in common bean (Phaseolus vulgaris L.), Ecotoxicology and Environmental Safety 200, 110732. DOI:10.1016/j.ecoenv.2020.110732.
Shafi A, Zahoor I, Mushtaq U. 2019. Proline Accumulation and Oxidative Stress: Diverse Roles and Mechanism of Tolerance and Adaptation Under Salinity Stress. In: Akhtar, M. (eds) Salt Stress, Microbes, and Plant Interactions: Mechanisms and Molecular Approaches. Springer, Singapore. DOI:10.1007/978-981-13-8805-7_13
Shiade SRG and Boelt B. 2020. Seed germination and seedling growth parameters in nine tall fescue varieties under salinity stress, Acta Agriculturae Scandinavica, Section B — Soil & Plant Science 70(6):485-494. DOI:10.1080/09064710.2020.1779338
Shrivastava P and Kumar R. 2015. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences 22(2):123–131. DOI:10.1016/j.sjbs.2014.12.001
Simoes WL, Calgaro M, Coelho DS, dos Santos, DB, and de Souza MA. 2016. Growth of sugar cane varieties under salinity. Revista Ceres 63(2):265–271. DOI:10.1590/0034-737X201663020019.
Taha SR, Seleiman MF, Alotaibi M, Alhammad BA, Rady MM, Mahdi, AHA. 2020. Exogenous Potassium Treatments Elevate Salt Tolerance and Performances of Glycine max L. by Boosting Antioxidant Defense System under Actual Saline Field Conditions. Agronomy 2020, 10, 1741. DOI: 10.3390/agronomy10111741
Tarchoun N, Saadaoui W, Mezghani N, Pavli OI, Falleh H, Petropoulos SA. 2022. The Effects of Salt Stress on Germination, Seedling Growth and Biochemical Responses of Tunisian Squash (Cucurbita maxima Duchesne) Germplasm. Plants 11, 800. DOI: 10.3390/plants11060800
Tlahig S, Bellani L, Karmous I, Barbieri F, Loumerem M, Muccifora S. 2021. Response to Salinity in Legume Species: An Insight on the Effects of Salt Stress during Seed Germination and Seedling Growth. Chemistry and Biodiversity, 18(4), e2000917. DOI:10.1002/cbdv.202000917
Wijewardana C, Henry WB, Hock MW, Reddy KR. 2016. Growth and physiological trait variation among corn hybrids for cold tolerance. Can. J. Plant Sci. 96:639–656. DOI: 10.1139/cjps-2015-0286
Yoshida S, Forno DS, Cock JH, Gomez KA. 1976. Laboratory Manual for Physiological Studies of Rice. 3th ed. Los Baños, Laguna, Philippines: IRRI. http://books.irri.org/9711040352_content.pdf
Yadav S, Mohammad I, Aqil A, Shamsul H. 2011. Causes of Salinity and Plant Manifestations to Salt Stress: A review. J. Environ. Biol. 32:667–685. https://pubmed.ncbi.nlm.nih.gov/22319886/
Zhang X, Yang H, Shukla MK, Du T. 2023. Proposing a crop-water-salt production function based on plant response to stem water potential. Agricultural Water Management 278, 108162. DOI: 10.1016/j.agwat.2023.108162.
Zulfiqar S, Sharif S, Saeed M, Tahir A. 2021. Role of Carotenoids in Photosynthesis. In: Zia-Ul-Haq, M., Dewanjee, S., Riaz, M. (eds) Carotenoids: Structure and Function in the Human Body. Springer, Cham. DOI:10.1007/978-3-030-46459-2_5
Zangani E, Ansari A, Shekari F et al. 2023. Alleviating the Injuries of NaCl Exposure on Respiratory Activities, Leaf Stomatal and Antioxidant Defense of Silybum marianum L. Seedlings by Exogenous Nitric Oxide. J. Plant Growth Regul. DOI:10.1007/s00344-023-11045-5.