Yield performance and anthocyanin content of several purple-fleshed sweet potato clones grown in two locations in East Nusa Tenggara, Indonesia

##plugins.themes.bootstrap3.article.main##

I G. B. ADWITA ARSA
YOSEP S. MAU
https://orcid.org/0000-0001-6654-5407
ANTONIUS S. S. NDIWA
https://orcid.org/0000-0001-5647-7463
Y. R. Y. GANDUT
LILY F. ISHAQ
https://orcid.org/0000-0002-6448-445X
I NYOMAN W. MAHAYASA

Abstract

Abstract. Arsa IGBA, Mau YS, Ndiwa ASS, Gandut YRY, Ishaq LF, Mahayasa INW. 2024. Yield performance and anthocyanin content of several purple-fleshed sweet potato clones grown in two locations in East Nusa Tenggara, Indonesia. Biodiversitas 25: 2276-2289. Several promising purple-fleshed sweet potato hybrid clones were identified to have high yield potential and, thus, can be evaluated for other superior traits and later be further processed for varietal registration and release. This study aimed to determine the tuber yield performance and anthocyanin content of several purple-fleshed sweet potato clones across two locations and to identify the best clones based on mean performance and stability. The study was conducted in the farmer's field in two different altitudes in West Timor, i.e., Mata Air Village, Kupang District (86 masl) and Netpala Village, Timor Tengah Selatan (TTS) District (1,090 masl) from April to September 2023. Six purple-fleshed sweet potato clones/varieties were assigned as treatment. The experiment was laid out in a complete block design in each location, and each treatment consisted of three replicates. Observed data included fresh storage root yield, number of storage roots per plant, storage root length, storage root tuber diameter, and tuber anthocyanin content. Observed data from the two trial locations were subjected to a combined ANOVA, cluster analysis, Principal Component Analysis (PCA), and GGE biplot analysis. The results showed that the genotype-by-location interaction effect was significant in all studied traits. Meanwhile, location or genotype significantly affected all traits except for the location, which did not significantly affect the anthocyanin content. The storage root yield ranged from ~19.95 t ha-1 to ~49.33 t ha-1, while the anthocyanin content ranged from ~28,64 mg/100 g to ~157,65 mg/100 g. The ranks of the tested genotypes based on the mean performance and stability are Undana UJ 7>Undana UJ 1>JPV-1>Antin 3>Undana UJ 6>Undana UJ 3 for storage root yield and JPV-1>Antin 3>Undana UJ 7>Undana UJ 6>Undana UJ 3>Undana UJ 1 for anthocyanin content.

##plugins.themes.bootstrap3.article.details##

References
Alam FM, Kurnianingsih N, Fatchiyah F. 2022. Phytochemical Analysis of Purple Sweet Potatoes (Ipomoea batatas) Roots Extract From Lawang and Kawi Mountain Cultivar, East Java, Indonesia. J.Exp. Life Sci. 12 (1): 17-22.
Ariviani S. 2010. Anti radical capacity of anthocyanin extract from fresh salam (Syzygium polyanthum [Wight.] Walp) fruits with varied solvent proportion. Cara Tani 25 (1): 43-49. [in Indonesian].
Balitkabi. 2017. Descriptions of Sweet Potato Superior Varieties 1977 – 2016. Indonesian Legumes and Tuber Crops Research Institute. Malang, East Java. Indonesia. [In Indonesian].
Bassey EE, Effiong UA, and Aniezi NF. 2019. Field Evaluation of Elite Sweet Potato (Ipomoea batatas (L.) Lam) Varieties in Humid Rainforest of Calabar, Nigeria. Asian J. Biol. Sci. 12: 779-785.
Budiman MR, Wiraswati HL, and Rezano A. 2021. Purple Sweet Potato Phytochemicals: Potential Chemo-preventive and Anticancer Activities. Maced. J. Med. Sci. 9(F):288-298. DOI: https://doi.org/10.3889/oamjms.2021.6784.
Gurmu F, Hussein S, and Laing M. 2017. Genotype-by-environment interaction and stability of sweetpotato genotypes for root dry matter, b-carotene and fresh root yield. Open Agric. 2: 473–485. DOI: 10.1515/opag-2017-0052.
Ginting E., Yulifianti R, Jusuf M, Mejaya MJ. 2014. Identification of physical, chemical and sensory properties of advanced sweet potato clones rich of anthocyanin content. Jurnal Penelitian Tanaman Pangan 34(1): 69-78.[in Indonesian]
He W, Zeng M, Chen J, Jiao Y, Niu F, Tao G, Zhang S, Qin F, He Z. 2016. Identi?cation and quantitation of anthocyanins in purple-?eshed sweet potatoes cultivated in China by UPLC-PDA and UPLC-QTOF-MS/MS. J. Agric. Food Chem. 64: 171–177.
Ishiguro K, Kuranouchi T, Kai Y, Katayama K. 2022. Comparison of anthocyanin and polyphenolics in purple sweetpotato (Ipomoea batatas Lam.) grown in different locations in Japan. Plant Prod. Sci. 25 (1): 84–94. DOI: https://doi.org/10.1080/1343943X.2021.1963292.
Jamshidmoghaddam M, Pourdad SS. 2013. Genotype x environment interactions for seed yield in rainfed winter safflower (Carthamus tinctorius L .) multi-environment trials in Iran, Euphytica 190: 357–369, DOI : https://doi.org/10.1007/s10681-012-0776-z
Khalili M and Pour-aboughadareh A. 2016. Parametric and non-parametric measures for evaluation yield stability and adaptability in barley doubled haploid lines, J. Agric. Sci. Technol. 18: 789–803.
Karuniawan A, Maulana H, Anindita PA, Yoel A, Ustari D, Suganda T, Concibido V. 2021. Storage root yield and sweetness level selection for new honey sweet potato (Ipomoea batatas [L.] Lam), Open Agric. 6 : 329–345, DOI: https://doi.org/10.1515/opag-2021-0219.
Kurnianingsih N, Ratnawati R, Nazwar T, Ali M, Fatchiyah F. 2021. Purple sweet potatoes from East Java of Indonesia revealed the macronutrient, anthocyanin compound and antidepressant activity candidate. Med. Arch. 75(2): 94-100.
Kim HJ, Koo KA, Park WS, Kang DM, Kim HS, Lee BY, Goo YM, Kim JH, Lee MK, Woo DK, et al. 2020. Anti-obesity activity of anthocyanin and carotenoid extracts from color-?eshed sweet potatoes. J. Food Biochem. 44: e13438.
Li A, Xiao R, He S, An X, He Y, Wang C, et al. 2019. Research advances of purple sweet potato anthocyanins: Extraction, identification, stability, bioactivity, application, and biotransformation. Molecules. 24(21). 3816. DOI: 10. 3390/molecules24213816.
Madawal S I, Madarakhandi TBS, and Narasannavar A. 2015. Genetic variability study in sweetpotato (Ipomoea batatas L.) genotypes. Int. J. Trop Agric. 33: 279–282.
Mano H, Ogasawara F, Sato K, Higo H, and Minobe Y. 2007. Isolation of a regulatory gene of anthocyanin biosynthesis in tuberous roots of purple-fleshed sweet potato. Plant Physiol. 143: 1252–1268.
Matsushita K, Sakayori T, and Ikeda T. 2016. The effect of high air temperature on anthocyanin concentration and the expressions of its biosynthetic genes in strawberry‚ ‘Sachinoka’. Environ. Control. Biol. 54(2): 101–107. DOI: https://doi.org/10.2525/ecb.54.101.
Mau YS, Ndiwa ASS, Arsa IGBA, Oematan SS. 2013. Growth and Yield Stability of Sweet Potato Clones across Four Locations in East Nusa Tenggara. Agrivita 35 (1): 95 -102.
Mau YS. 2018. Resistance response of fifteen sweet potato genotypes to scab disease (Sphaceloma batatas) in two growing sites in East Nusa Tenggara, Indonesia. Int. J. Trop Trop. Drylands 2(1): 5-11. DOI: https://doi.org/10.13057/tropdrylands/t020102.
Mau YS, Ndiwa ASS, Markus JER, Arsa IGBA. 2019. Agronomic performance and drought tolerance level of sweet potato hybrids grown in Kupang, East Nusa Tenggara, Indonesia. Biodiversitas 20 (8): 2187-2196. DOI: 10.13057/biodiv/d200812.
Mau YS, Wadu MN, Ndiwa ASS, Markus JER, Arsa IGBA. 2021. A screening of resistance to sweet potato weevil (Cylas formicarius Fab.) in a collection of sweet potato clones under laboratory conditions. Int J Trop Drylands 5(2): 41-47. DOI: https://www.smujo.id/td/article/view/9251/5192.
Mau YS, Ndiwa ASS, Arsa IGBA,. Asa GV, Nana A, Londingkene JA, Hosang EY, Kotta NR. 2022. Assessment of genetic diversity and characterization of Distinctness, Uniformity and Stability of Newly Bred Clones and Check Cultivars of Sweet Potato Based on Morphological Characters. Biodiversitas 23 (11): 5923-5934.
Maulana H, Nafi’ah HH, Solihin E, Ruswandi D, Arifin M, Amien S, Karuniawan A. 2022. Combined stability analysis to select stable and high yielding sweetpotato genotypes in multi-environmental trials in West Java, Indonesia, Agric. Nat. Resour. 56: 761–772. DOI: https://doi.org/10.34044/j.anres.2022.56.4.10.
Maulana H, Solihin E, Trimo L, Hidayat S, Wijaya AA, Hariadi H, Amien S, Ruswandi D, Karuniawan A. 2023. Heliyon. Genotype-by-environment interactions (GEIs) and evaluate superior sweet potato (Ipomoea batatas [L.] Lam) using combined analysis and GGE biplot. Heliyon. e20203. DOI: https://doi.org/10.1016/j.heliyon.2023.e20203.
Montilla EC, Hillebrand S, Winterhalter P. 2011. Anthocyanins in purple sweet potato (Ipomoea batatas L.) varieties. Fruit, Veg. Cereal Sci. Biotech. 5 (2): 19-24.
Mukherjee A, and Naskar SK. 2012. Performance of orange and purple-fleshed sweet potato genotypes in coastal rlocations of Odisha. J. Root Crops 38(1): 26-31.
Mustamu YA, Tjintokohadi K, Gruneberg WJ, Karuniawan A, Ruswandi D. 2018. Selection of superior genotype of sweet-potato in Indonesia based on stability and adaptability, Chil. J. Agric. Res. 78: 461–469. DOI: https://doi.org/10.4067/S0718-58392018000400461.
Ngailo S, Shimelis H, Sibiya J, Mtunda K, and Mashilo J. 2019. Genotype-by-environment interaction of newly-developed sweet potato genotypes for storage root yield, yield-related traits, and resistance to sweet potato virus disease. Heliyon 5:e01448. DOI: 10.1016/j.heliyon.2019.e01448.
Park S-C, Kim Y-H, Kim SH, Jeong YJ, Kim CY, Lee JS, Bae J-Y, Ahn M-J, Jeong JC, Lee HS, et al. 2015. Overexpression of the IbMYB1 gene in an orange-fleshed sweet potato cultivar produces a dual-pigmented transgenic sweet potato with improved antioxidant activity. Physiol. Plant. 153: 525–537.
Rahajeng W, Rahayuningsih S.A. 2017. Evaluation of orange-fleshed sweet potato genotypes for yield and yield contributing parameters in two environments. Nusantara Biosci 9 (3): 275-281. DOI: 10.13057/nusbiosci/n090306
Saitama A, Nugroho A, Widaryanto e. 2017. Yield response of ten varieties of sweet potato (Ipomoea batatas L.) cultivated on dryland in rainy season. J. Degrade Min. Land Manag. 4 (4): 919-926. DOI:10.15243/jdmlm.2017.044.919.
Schwartz E, Tzulker R, Glazer I, Bar-Ya’akov I, Wiesman Z,Tripler E, Bar-Ilan I. Fromm H, Borochov-Neori H, Holland D, & Amir R. 2009. Environmental conditions affect the color, taste, and antioxidant capacity of 11 pomegranate accessions’ fruits. J. Agric. Food Chem. 57 (19): 9197–9209. DOI: https://doi.org/10.1021/jf901466c.
Sun J, Chen H, Kan J, Gou Y, Liu J, Zhang X, Wu X, Tang S, Sun R, Qian C. et al. 2020. Anti-in?ammatory properties and gut microbiota modulation of an alkali-soluble polysaccharide from purple sweet potato in DSS-induced colitis mice. Int. J. Biol. Macromol. 153: 708–722.
Tanaka M, Takahata Y, Kurata R, Nakayama H, and Yoshinaga M. 2012. Structural and functional characterization of IbMYB1 genes in recent Japanese purple-fleshed sweetpotato cultivars. Mol. Breed. 29: 565–574.
Tanaka M, Koji Ishiguro K, Oki T, Okuno S. 2017. Functional components in sweetpotato and their genetic improvement. Breed. Sci. 67: 52–61. DOI:10.1270/jsbbs.16125.
Villavicencio L, Blankenship S, Yencho G, Thomas J, Rape, C. 2007. Temperature effect on skin adhesion, cell wall enzyme activity, lignin content, anthocyanins, growth parameters, and periderm histochemistry of sweetpotato. J. Am. Soc. Hortic. Sci. 132(5): 729–738. DOI: https://doi.org/ 10.21273/JASHS.132.5.729.
Wang F, Zhang S, Deng G, Xu K, Xu H, Liu J. 2022. Extracting total anthocyanin from purple sweet potato using an effective ultrasound-assisted compound enzymatic extraction technology. Molecule 27: 4344. DOI: https:// doi.org/10.3390/molecules27144344.
Wong PY, Tan ST.2020. Comparison of total phenolic content and antioxidant activities in selected coloured plants. Br. Food J. 122: 3193–3201.
Yan Y, Zhang JL, Zhou Q. 2022. Targets and mechanisms of dietary anthocyanins to combat hyperglycemia and hyperuricemia: A comprehensive review. Crit. Rev. Food Sci. Nutr. 62: 1119–1143.

Most read articles by the same author(s)