Flowering and fruiting phenology in two varieties of grapes (Vitis vinifera) in tropical regions, Indonesia

##plugins.themes.bootstrap3.article.main##

SERI KAMILA
WINARSO DERAJAD WIDODO
EDI SANTOSA
M. RAHMAT SUHARTANTO

Abstract

Abstract. Kamila S, Widodo WD, Santosa E, Suhartanto MR. 2024. Flowering and fruiting phenology in two varieties of grapes (Vitis vinifera) in tropical regions, Indonesia. Biodiversitas 25: 4593-4602. Determining harvest time is a crucial phase in the production of high-quality grapes (Vitis vinifera L.). Traditional indicators, such as the number of days after pruning, the flowering period, and changes in skin color, are often unreliable. The variations in planting locations, particularly between lowland and highland areas, significantly influence temperature and climate conditions. These factors, especially in tropical regions with high rainfall, complicate the estimation of the harvest time, necessitating precise harvest handling. To determine grapes' ripeness level, a more accurate method, such as the heat unit method or accumulated heat unit, is required. This method considers the actual average temperature obtained by plants while in the field until they reach optimal maturity for harvest. Therefore, this study aimed to determine the heat units (°C per day) required from anthesis to harvest as a measurable criterion for assessing the ripeness of Jupiter and Transfiguration grape varieties. Additionally, it also focused on identifying the flowering and fruiting phenology of grapes in Indonesia, located in a tropical climate. The results showed that the two grape varieties can be harvested with a heating unit for Jupiter of 2521°C and Transfiguration of 2527°C. There was no difference between the two, but there was a significant difference in fruit diameter and metabolite compound content. These findings have significant practical implications for grape growers in tropical regions, providing them with a more accurate method for determining harvest time and improving the quality of their grapes.

##plugins.themes.bootstrap3.article.details##

References
Abeysinghe SK, Greer DH, Rogiers SY. 2014. The interaction of temperature and light on yield and berry composition of Vitis vinifera 'Shiraz' under field conditions. Acta Hortic 1115 (18): 119-126. DOI: 10.17660/ActaHortic. 2016.1115.18.
Azuma A, Yakushiji H, Sato A. 2019. Post-harvest light irradiation and appropriate temperature treatment increase anthocyanin accumulation in grape berry skin. Postharvest Biol Technol 147: 89-99. DOI: 10.1016/j.postharvbio.2018.09.008.
Biasi R, Brunori E, Ferrara C, Salvati L. 2019. Assessing impacts of climate change on phenology and quality traits of Vitis vinifera L: The contribution of local knowledge. Plants 8 (5): 121. DOI: 10.3390/plants8050121.
Camargo UA, Mandelli F, Conceição MAF, Tonietto J. 2012. Grapevine performance and production strategies in tropical climates. Asian J Food Agro-Ind 5 (04): 257-269.
Chen H, Yang J, Deng X, Lei Y, Xie S, Guo S, Ren R, Li J, Zhang Z, Xu T. 2020. Foliar-sprayed manganese sulfate improves flavonoid content in grape berry skin of Cabernet Sauvignon (Vitis vinifera L.) growing on alkaline soil and wine chromatic characteristics. Food Chem 314: 126182. DOI: 10.1016/j.foodchem.2020.126182.
Colombo RC, Roberto SR, Nixdorf SL, Pérez-Navarro J, Gómez-Alonso S, Mena-Morales A, García-Romero E, Gonçalves LSA, da Cruz MA, de Carvalho DU, Madeira TB, Watanabe LS, de Souza RT, Hermosín-Gutiérrez I. 2020. Analysis of the phenolic composition and yield of ‘BRS Vitoria’seedless table grape under different bunch densities using HPLC-DAD-ESI-MS/MS. Food Res Intl 130: 108955. DOI: 10.1016/j.foodres.2019.108955.
Cosme F, Pinto T, Vilela A. 2018. Phenolic compounds and antioxidant activity in grape juices: A chemical and sensory view. Beverages 4 (1): 22. DOI: 10.3390/beverages4010022.
de Rességuier L, Mary S, Le Roux R, Petitjean T, Quénol H, van Leeuwen C. 2020. Temperature variability at local scale in the Bordeaux Area. Relations with environmental factors and impact on vine phenology. Front Plant Sci 11. DOI: 10.3389/fpls.2020.00515.
Djufry F. 2022. Pengembangan Pertanian Cerdas Iklim Inovatif Berbasis Teknologi Budidaya Adaptif menuju Pertanian Modern Berkelanjutan. Kementan Bogor. IARD Press, Jakarta. [Indonesian]
Fraga H, Santos JA, Moutinho-Pereira J, Carlos C, Silvestre J, Eiras-Dias J, Mota T, Malheiro AC. 2016. Statistical modelling of grapevine phenology in Portuguese wine regions: Observed trends and climate change projections. J Agric Sci 154: 795-811. DOI: 10.1017/S0021859615000933.
Gao F, Zhang X. 2021. Mapping crop phenology in near real-time using satellite remote sensing: Challenges and opportunities. J Remote Sens 2021: 8379391. DOI: 10.34133/2021/8379391.
Giese G, Cruz CV, Leonardelli M 2020. Grapevine Phenology: Annual Growth and Development. College of Agricultural, Consumer And Environmental Sciences, New Mexico State University, New Mexico.
Gordon TR. 2017. Fusarium oxysporum and the Fusarium wilt syndrome. Ann Rev Phytopathol 55: 23-39. DOI: 10.1146/annurev-phyto-080615-095919.
Gouot JC, Smith JP, Holzapfel BP, Walker AR, Barril C. 2018. Grape berry flavonoids: A review of their biochemical responses to high and extreme high temperatures. J Exp Bot 70 (2): 397-423. DOI: 10.1093/jxb/ery392.
Gray REJ, Ewers RM. 2021. Monitoring forest phenology in a changing world. Forests 12 (3): 297. DOI: 10.3390/f12030297.
Grillakis GM, Polykretis C, Alexakis DD. 2020. Past and projected climate change impacts on rainfall erosivity: Advancing our knowledge for the eastern Mediterranean island of Crete. Catena 193: 104625. DOI: 10.1016/j.catena.2020.104625.
Guan L, Dai Z, Wu B-H, Wu J, Merlin I, Hilbert G, Renaud C, Gomès E, Edwards E, Li S-H, Delrot S. 2016. Anthocyanin biosynthesis is differentially regulated by light in the skin and flesh of white-fleshed and teinturier grape berries. Planta 243 (1): 23-41. DOI: 10.1007/s00425-015-2391-4.
Guilpart N, Metay A, Gary C. 2014. Grapevine bud fertility and number of berries per bunch are determined by water and nitrogen stress around flowering in the previous year. Eur J Agron 54: 9-20. DOI: 10.1016/j.eja.2013.11.002.
Halepotara FH, Kanzaria DR, Rajatiya JH, Solanki MB, Dodiya K. 2019. Effect of heat unit and time duration required for maturation of mango (Mangifera indica L.) CV. Kesar. J Pharmacogn Phytochem 8 (1): 537-541.
Kaplan J, Travadon R, Cooper M, Hillis V, Lubell M, Baumgartner K. 2016. Identifying economic hurdles to early adoption of preventative practices: The case of trunk diseases in California winegrape vineyards. Wine Econ Policy 5 (2): 127-141. DOI: 10.1016/j.wep.2016.11.001.
Kok D. 2014. A review on grape growing in tropical regions. Turkish J Agric Nat Sci 1: 1236-1241.
K?rösi L, Molnár S, Teszlák P, Dörnyei Á, Maul E, Töpfer R, Marosvölgyi T, Szabó É, Röckel F. 2022. Comparative study on grape berry anthocyanins of various teinturier varieties. Foods 11 (22): 3668. DOI: 10.3390/ foods11223668.
Ky I, Lorrain B, Kolbas N, Crozier A, Peissedre P-L. 2014. Wine by-products: Phenolic characterization and antioxidant activity evaluation of grapes and grape pomaces from six different French grape varieties. Molecules 19 (1): 482-506. DOI: 10.3390/molecules19010482.
Liu M-Y, Song C-Z, Chi M, Wang T-M, Zuo L-L, Li X-L, Zhang Z-W, Xi Z-M. 2016. The effects of light and ethylene and their interaction on the regulation of proanthocyanidin and anthocyanin synthesis in the skins of Vitis vinifera berries. Plant Growth Regul 79: 377-390. DOI: 10.1007/s10725-015-0141-z.
Liu Q, Tang G-Y, Zhao C-V, Feng X-L, Xu X-Y, Cao S-Y, Meng X, Li S, Gan R-Y, Li H-B. 2018. Comparison of antioxidant activities of different grape varieties. Molecules 23 (10): 2432. DOI: 10.3390/molecules23102432.
Mardianto S, Setiyanto A. 2023. Analisis Dampak El Nino Terhadap Produksi Tanaman Pangan. Policy Brief, Kementrian Pertanian Republik Indonesia, Jakarta. [Indonesian]
Massonnet M, Fasoli M, Tornielli GB, Altieri M, Sandri M, Zuccolotto P, Paci P , Gardiman M, Zenoni S, Pezzotti M. 2017.. Ripening transcriptomic program in red and white grapevine varieties correlates with berry skin anthocyanin accumulation. Plant Physiol 174 (4): 2376-2396. DOI: 10.1104/pp.17.00311.
Mattioli R, Francioso A, Mosca L, Silva P. 2020. Anthocyanins: A comprehensive review of their chemical properties and health effects on cardiovascular and neurodegenerative diseases. Molecules 25 (17): 3809. DOI: 10.3390/molecules25173809.
Meng F-Q, Cao R, Yang D-M, Niklas KJ, Sun S-C. 2014. Trade-offs between light interception and leaf water shedding: A comparison of shade- and sun-adapted species in a subtropical rainforest. Oecologia 174 (1): 13-22. DOI: 10.1007/s00442-013-2746-0.
Mihailescu E, Soares MB. 2020. The influence of climate on agricultural decisions for three European crops: A systematic review. Front Sustain Food Syst 4: 64. DOI: 10.3389/fsufs.2020.00064.
Nan X, Li W, Shao M, Cui Z, Wang H, Huo J, Chen L, Chen B, Ma Z. 2024. Shading treatment reduces grape sugar content by suppressing photosynthesis-antenna protein pathway gene expression in grape berries. Intl J Mol Sci 25 (9): 5029. DOI: 10.3390/ijms25095029.
Pexioto CM, Dias MI, Alves MJ, Calhelha RC, Barros L, Pinho SP, Ferreira ICFR. 2018. Grape pomace as a source of phenolic compounds and diverse bioactive properties. Food Chem 253: 132-138. DOI: 10.1016/j.foodchem.2018.01.163.
Qin L, Xie H, Xiang N, Wang M, Han S, Pan M, Guo X, Zhang W. 2022. Dynamic changes in anthocyanin accumulation and cellular antioxidant activities in two varieties of grape berries during fruit maturation under different climates. Molecules 27 (2): 384. DOI: 10.3390/molecules27020384.
Rodriguez-Casado A. 2016. The health potential of fruits and vegetables phytochemicals: Notable examples. Crit Rev Food Sci Nutr 56 (7): 1097-1107. DOI: 10.1080/10408398.2012.755149.
Schreiner RP, Osborne J, Skinkis PA. 2018. Nitrogen requirements of Pinot noir based on growth parameters, must composition, and fermentation behavior. Am J Enol Viticult 69 (1): 45-58. DOI: 10.5344/ajev.2017.17043.
Shafiq I, Hussain S, Raza MA, Iqbal N, Asghar MA, Raza A, Fan Y-F, Mumtaz M, Shoaib M, Ansar M, Manaf A, Yang W-Y, Yang F. 2021. Crop photosynthetic response to light quality and light intensity. J Integr Agric 20 (1): 4-23. DOI: 10.1016/S2095-3119(20)63227-0.
Shinomiya R, Fujishima H, Muramoto K, Shiraishi M. 2015. Impact of temperature and sunlight on the skin coloration of the ‘Kyoho’ table grape. Sci Hortic 193: 77-83. DOI: 10.1016/j.scienta.2015.06.042.
Sims DA, Gamon JA. 2002. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens Environ 81 (2-3): 337-354. DOI: 10.1016/S0034-4257(02)00010-X.
Singh D, Basu C, Meinhardt-Wollweber M, Roth B. 2015. LEDs For energy efficient greenhouse lighting. Renew Sustain Energy Rev 49: 139-147. DOI: 10.1016/j.rser.2015.04.117.
Tóth JP, Végvári Z. 2016. Future of winegrape growing regions in Europe. Aust J Grape Wine Res 22 (1): 64-72. DOI: 10.1111/ajgw.12168.
Umber M, Paget B, Hubert O, Salas I, Salmon F, Jenny C, Chillet M, Bugaud C. 2011. Application of thermal sums concept to estimate the time to harvest new banana hybrids for export. Scientia Horticulturae. 129:52–57. DOI:10.1016/j.scienta.2011.03.005.
Van den Ende W, El-Esawe SK. 2014. Sucrose signaling pathways leading to fructan and anthocyanin accumulation: A dual function in abiotic and biotic stress responses. Environ Exp Bot 108: 4-13. DOI: 10.1016/j.envexpbot. 2013.09.017.
Wang C, Wang L, Ye J, Xu F. 2022. Fruit quality of Vitis vinifera: How plant metabolites are affected by genetic, environmental, and agronomic factors. Sci Hortic 305: 111404. DOI: 10.1016/j.scienta.2022.111404.
Xu C, McDowell NG, Fisher RA, Wei L, Sevanto S, Christoffersen BO, Weng E, Middleton RS. 2019. Increasing impacts of extreme droughts on vegetation productivity under climate change. Nat Clim Change 9: 948-953. DOI: 10.1038/s41558-019-0630-6.
Yang C, Xiao Y, Zhang Y, Sun Y, Han J. 2020. Heterogeneous network representation learning: Survey, benchmark, evaluation, and beyond. arXiv preprint arXiv 2004: 00216. DOI: 10.48550/arXiv.2004.00216.
Zhang L, Li X, Pang Y, Cai X, Lu J, Ren X, Kong Q. 2021. Phenolics composition and contents, as the key quality parameters of table grapes, may be influenced obviously and differently in response to short-term high temperature. LWT 149: 111791. DOI: 10.1016/j.lwt.2021.111791.
Zhou D-D, Li J, Xiong R-G, Saimaiti A, Huang S-Y, Wu S-X, Yang Z-J, Shang A, Zhao C-N, Gan R-Y, Li H-B. 2022. Bioactive compounds, health benefits and food applications of grape. Foods 11 (18): 2755. DOI: 10.3390/foods11182755.
Zou L, Zhong G-Y, Wu B, Yang Y, Li S, Liang Z. 2019. Effects of sunlight on anthocyanin accumulation and associated co-expression gene networks in developing grape berries. Environ Exp Bot 166: 103811. DOI: 10.1016/j.envexpbot.2019.103811.

Most read articles by the same author(s)