Isolation and potential evaluation of organophosphate-indigenous degrading fungi from Singolangu Farmland, Magetan, Indonesia

##plugins.themes.bootstrap3.article.main##

PUJIATI
https://orcid.org/0000-0002-5839-1214
HERTANTI
R. BEKTI KISWARDIANTA
FATIMAH
https://orcid.org/0000-0002-0056-2690
RICO RAMADHAN
NI'MATUZAHROH
https://orcid.org/0000-0002-4631-1096

Abstract

Abstract. Pujiati, Hertanti, Kiswardianta RB, Fatimah, Ramadhan R, Ni’matuzahroh. 2025. Isolation and potential evaluation of organophosphate-indigenous degrading fungi from Singolangu Farmland, Magetan, Indonesia. Biodiversitas 26: 157-168. Pesticide use is prevalent in Indonesian agriculture, especially in vegetable farming regions like Singolangu Hamlet, Sarangan Village, Plaosan, Magetan, East Java. While pesticides effectively control pests, their overuse and misuse have caused soil contamination, health disruptions, and decreased agricultural productivity. This study examines the potential of indigenous fungi from Singolangu to remediate soil polluted by organophosphate pesticides, specifically chlorpyrifos and profenofos. Twelve indigenous mold isolates were isolated and ex-situ bioaugmentation was performed with six treatments. The levels of N, P, K, pH, and organophosphate pesticide residues were analyzed. Aspergillus flavus was the most effective in bioremediation, achieving significant results within four weeks and displaying N, P, K, pH values of 101 ppm, 99 ppm, 306 ppm, and 6, respectively. The KPSK Formula (a mixture of all Fungi KPS1 to KPS12 ) which utilized a 12-isolate consortium, also showed significant results, with N, P, K, and pH values of 57 ppm, 59 ppm, 138 ppm, and 6, respectively. The control soil had 150 ppm of chlorpyrifos and 29 ppm of profenofos left over from the pesticides, but the bioremediation treatment KPS3 lowered these levels to 97 ppm of chlorpyrifos and 5.5 ppm of profenofos. This study indicates that indigenous fungi can efficiently degrade profenofos and chlorpyrifos pesticides, either individually or in consortium.

##plugins.themes.bootstrap3.article.details##

References
Aguilar-Rosero J, Urbina-López ME, Rodríguez-González BE, León-Villegas SX, Luna-Cruz IE, Cárdenas-Chávez DL. 2022. Development and characterization of bioadsorbents derived from different agricultural wastes for water reclamation: A review. Appl Sci 12 (5): 2740. DOI: 10.3390/app12052740.
Ahmed N, Zhang B, Chachar Z, Li J, Xiao G, Wang Q, Hayat F, Deng L, Narejo MN, Bozdar B, Tu P. 2024. Micronutrients and their effects on horticultural crop quality, productivity and sustainability. Sci Hortic 23 (1): 112512. DOI: 10.1016/j.scienta.2023.112512.
Annappa NN, Murthy RK, Bhavya N, Govinda K, Uday KSN. 2024. Soil phosphorus distribution across diverse land use systems: A comprehensive review. J Sci Res Rep 30 (6): 352-364. DOI: 10.9734/jsrr/2024/v30i62050.
Awasthi AK, Pandey AK, Khan J. 2017. A preliminary report of indigenous fungal isolates from contaminated municipal solid waste site in India. Environ Sci Pollut Res 24: 8880-8888. DOI: 10.1007/s11356-017-8472-0.
Novair SB, Cheraghi M, Faramarzi F, Lajayer BA, Senapathi V, Astatkie T, Price GW. 2023. Reviewing the role of biochar in paddy soils: An agricultural and environmental perspective. Ecotoxicol Environ Saf 263: 115228. DOI: 10.1016/j.ecoenv.2023.115228.
Bahadur I, Maurya BR Kumar A, Meena VS, Raghuwanshi R. 2016. Towards the soil sustainability and potassium-solubilizing microorganisms. In: Meena V, Maurya B, Verma J, Meena R (eds). Potassium Solubilizing Microorganisms for Sustainable Agriculture. Springer India, New Delhi. DOI: 10.1007/978-81-322-2776-2_18.
Barberis CL, Carranza CS, Magnoli K, Benito N, Magnoli C. 2019. Development and removal ability of non-toxigenic Aspergillus section Flavi in presence of atrazine, chlorpyrifos and endosulfan. Rev Argent Microbiol 51 (1): 3-11. DOI: 10.1016/j.ram.2018.03.002.
Birhanu G, Zerihun T, Genene TGT, Endegena AEA, Misganaw WMW, Endeshaw AEA. 2017. Phosphate solubilizing fungi isolated and characterized from Teff rhizosphere soil collected from North Showa zone, Ethiopia. Afr J Microbiol Res 11: 687-696. DOI: 10.5897/ajmr2017.8525.
Birolli WG, Vacondio B, Alvarenga N, Seleghim MH, Porto AL. 2018. Enantioselective biodegradation of the pyrethroid (±)-lambda-cyhalothrin by marine-derived fungi. Chemosphere 197: 651-660. DOI: 10.1016/j.chemosphere.2018.01.054.
Bisht J, Harsh NSK, Palni LMS, Agnihotri V, Kumar A. 2019. Biodegradation of chlorinated organic pesticides endosulfan and chlorpyrifos in soil extract broth using fungi. Remediation J 29 (3): 63-77. DOI: 10.1002/rem.21599.
Caravaca F, Alguacil MM, Hernández JA, Roldán A. 2005. Involvement of antioxidant enzyme and nitrate reductase activities during water stress and recovery of mycorrhizal Myrtus communis and Phillyrea angustifolia plants. Plant Sci 169: 191-197. DOI: 10.1016/j.plantsci.2005.03.013.
Odokonyero K, Acuña TB, Cardoso JA, Jimenéz JC, Rao IM, Nuñez J, Arango J. 2017. Potential role of fungal endophytes in biological nitrification inhibition in Brachiaria grass species. J Plant Biochem Physiol 5 (2): 2329-9029. DOI: 10.4172/2329-9029.1000191.
David OM, Olawusi AC, Oluwole OA, AAdeola PO, Odeyemi AT. 2023. Isolation, molecular characterization and application of Aspergillus niger and Penicillium chrysogenum with biofertilizer potentials to enhance rice growth. Trop Nat Prod Res 7 (4): 2790-2795. DOI: 10.26538/tjnpr/v7i4.20.
Devi KS, Misra DK, Saha J, Devi PS, Sinha B. 2018. Screening of suitable culture media for growth, cultural and morphological characters of pycnidia forming fungi. Intl J Curr Microbiol Appl Sci 7 (08): 4207-4214. DOI: 10.20546/ijcmas.2018.708.440.
Du Q, Zhao X, Jiang C, Wang X, Han Y, Wang J, Yu H. 2017. Effect of potassium deficiency on root growth and nutrient uptake in maize (Zea mays L.). Agric Sci 8: 1263-1277. DOI: 10.4236/as.2017.811091.
Efeo?lu FG, Çakan H, Kara U, Da? T. 2022. Forensic microbiological analysis of soil and the physical evidence buried in soil obtained from several towns in Istanbul. Cureus 14 (2): e22329. DOI: 10.7759/cureus.22329.
Etesami H. 2020. Enhanced phosphorus fertilizer use efficiency with microorganisms. In: Meena RS (eds). Nutrient Dynamics for Sustainable Crop Production. Springer Singapore, Singapore. DOI: 10.1007/978-981-13-8660-2_8.
Fernández-Triana I, Rubilar O, Parada J, Fincheira P, Benavides-Menoza A, Durán P, Fernández-Baldo M, Seabra AB, Tortella GR. 2024. Metal nanoparticles and pesticides under global climate change: Assessing the combined effects of multiple abiotic stressors on soil microbial ecosystems. Sci Tot Environ 942: 173494. DOI: 10.1016/j.scitotenv.2024.173494.
Glässnerová K, Sklená? F, Jurjevi? Ž, Houbraken J, Yaguchi T, Visagie CM, Gene J, Siqueira JPZ, Kubatova A, Kolarik M, Hubka V. 2022. A monograph of Aspergillus section Candidi. Stud Mycol 102: 1-51. DOI: 10.3114/sim.2022.102.01.
Guchi E, Ayalew A, Dejene M, Ketema M, Asalf B, Fininsa C. 2014. Occurrence of Aspergillus species in groundnut (Arachis hypogaea L.) along the value chain in different agro-ecological zones of Eastern Ethiopia. J Appl Environ Microbiol 2 (6): 309-317. DOI: 10.12691/jaem-2-6-7.
Bharose AA, Gajera HP, Hirpara DG, Kachhadia VH, Golakiya BA. 2017. Morphological credentials of afla-toxigenic and non-toxigenic Aspergillus using polyphasic taxonomy. Intl J Curr Microbiol Appl Sci 6 (3): 2450-2465. DOI: 10.20546/ijcmas.2017.603.279.
Ismail AS, El-Sheshtawy HS, Khalil NM. 2019. Bioremediation process of oil spill using fatty-lignocellulose sawdust and its enhancement effect. Egypt J Petroleum 28: 205-211. DOI: 10.1016/j.ejpe.2019.03.002.
Jagat LMSS, Darmayasa IBG, Wijana IMS. 2021. Potential Rhizopus spp. in control the growth of Aspergillus flavus FNCC6109 in broiler chicken concentrate feed. Jurnal Biologi Udayana 2: 147-156. DOI: 10.24843/JBIOUNUD.2021.v25.i02.p06.
Jasrotia R, Langer S, Dhar M. 2024. Chapter 9-Pesticide impacts on humans. In: Sharma A, Kumar V, Zheng B (eds). Pesticides in the Environment. Elsevier, Amsterdam. DOI: 10.1016/B978-0-323-99427-9.00008-2.
Jumaeva A. 2023. Hygienic aspects of the possibility of using the new insecticide seller in agriculture. E3S Web Conf 460: 11003.
Jurjevic Z, Peterson SW, Horn BW. 2012. Aspergillus section Versicolores: Nine new species and multilocus DNA sequence based phylogeny. IMA Fungus 3 (1): 59-79. DOI: 10.5598/imafungus.2012.03.01.07.
Jyothi V, Basaiah T. 2023. Phosphatase activity of phosphate solubilizing fungi isolation from rhizosphere soil of medicinal plants of Shivamogga District. Res J Biotechnol 18 (5): 56-62. DOI: 10.25303/1805rjbt056062.
Khan MS, Ahmad E, Zaidi A, Oves M. 2013. Functional aspect of phosphate-solubilizing bacteria: Importance in crop production. In: Maheshwari DK, Saraf M, Aeron A (eds). Bacteria in Agrobiology: Crop Productivity. Springer Berlin Heidelberg, Berlin, Heidelberg. DOI: 10.1007/978-3-642-37241-4_10.
Kumar A, Sharma A, Chaudhary P, Gangola S. 2021. Chlorpyrifos degradation using binary fungal strains isolated from industrial waste soil. Biologia 76: 3071-3080. DOI: 10.1007/s11756-021-00816-8.
Kumari PDSU, Nanayakkara CM. 2017. Phosphate-solubilizing fungi for efficient soil phosphorus management. Sri Lanka J Food Agric 3: 1-9. DOI: 10.4038/sljfa.v3i2.46.
Levin TP, Baty DE, Fekete T, Truant AL, Suh B. 2004. Cladophialophora bantiana brain abscess in a solid-organ transplant recipient: Case report and review of the literature. J Clin Microbiol 42 (9): 4374-4378. DOI: 10.1128/JCM.42.9.4374-4378.2004.
Matúš P, Littera P, Farkas B, Urík M. 2023. Review on performance of Aspergillus and Penicillium species in biodegradation of organochlorine and organophosphorus pesticides. Microorganisms 11 (6): 2-20. DOI: 10.3390/microorganisms11061485.
Meena KK, Sorty AM, Bitla UM et al. 2017a. Abiotic stress responses and microbe-mediated mitigation in plants: The omics strategies. Front Plant Sci 8: 172. DOI: 10.3389/fpls.2017.00172.
Meena PD, Yadav GS, Yadav SS. 2017b. Phosphate solubilizing microorganisms, principles and application of microphos technology. J Clean Prod 145: 157-158. DOI: 10.1016/j.jclepro.2017.01.024.
Mohapatra D, Rath SK, Mohapatra PK. 2021. Evaluating a preparation of malathion-tolerant Aspergillus niger MRU01 for accelerated removal of four organophosphorus insecticides. J Chem Technol Biotechnol 96 (6): 1603-1610. DOI: 10.1002/jctb.6679.
Mohapatra D, Rath SK, Mohapatra PK. 2018. Bioremediation of Insecticides by White-Rot Fungi and Its Environmental Relevance. In: Prasad R. (eds). Mycoremediation and Environmental Sustainability. Fungal Biology. Springer, Cham. DOI: 10.1007/978-3-319-77386-5_7.
Mukhlis I, Gürçam ÖS. 2022. The role of agricultural sector in food security and poverty alleviation in Indonesia and Turkey. Asian J Agric Extension Econ Sociol 40 (11): 430-436. DOI: 10.9734/ajaees/2022/v40i111728.
Naik RH, Chawan R, Pallavi MS, Bheemanna M, Rachappa V, Pramesh D, Naik A, Nidoni U. 2022. Determination of profenofos residues using LC-MS/MS and its dissipation kinetics in pigeonpea pods. Legume Res 45 (11): 1372-1380. DOI: 10.18805/LR-4330.
Olaniyan FT, Alori ET, Adekiya AO, Ayorinde BB, Daramola FY, Osemwegie OO, Babalola OO. 2022. The use of soil microbial potassium solubilizers in potassium nutrient availability in soil and its dynamics. Ann Microbiol 72 (1): 45. DOI: 10.1186/s13213-022-01701-8.
Ptaszek M, Canfora L, Pugliese M, Pinzari F, Gilardi G, Trzci?ski P, Malusà, E. 2023. Microbial-based products to control soil-borne pathogens: Methods to improve efficacy and to assess impacts on microbiome. Microorganisms 11 (1): 224. DOI: 10.3390/microorganisms11010224.
Ramirez AC. 2022. A Step Closer to Unveiling The Environmental Diversity of Spores and Lysis-Resistant Cells in Bacteria, Archaea and Fungi. [Dissertation]. Université de Neuchâtel, Neuchâtel, Swiss.
Rawat P, Das S, Shankhdhar D, Shankhdhar SC. 2021. Phosphate-solubilizing microorganisms: Mechanism and their role in phosphate solubilization and uptake. J Soil Sci Plant Nutr 21 (1): 49-68. DOI: 10.1007/s42729-020-00342-7.
Rizwan M, Gilani SR, Durani AI, Naseem S. 2021. Materials diversity of hydrogel: Synthesis, polymerization process and soil conditioning properties in agricultural field. J Adv Res 33: 15-40. DOI: 10.1016/j.jare.2021.03.007.
Schreiber F, Scherner A, Andres A, Concenço G, Ceolin WC, Martins MB. 2018. Experimental methods to evaluate herbicides behavior in soil. Revista Brasileira de Herbicidas 17 (1): 71-85. DOI: 10.7824/rbh.v17i1.540.
Singh R, Upadhyay SK, Sharma I, Kamboj P, Ranai A, Kumar P. 2020. Assessment of enzymatic potential of soil fungi to improve soil quality and fertility. Asian J Biol Life Sci 9 (2): 163-168. DOI: 10.5530/ajbls.2020.9.25.
Soares PRS, Birolli WG, Ferreira IM, Porto ALM. 2021. Biodegradation pathway of the organophosphate pesticides chlorpyrifos, methyl parathion and profenofos by the marine-derived fungus Aspergillus sydowii CBMAI 935 and its potential for methylation reactions of phenolic compounds. Mar Pollut Bull 166: 112185. DOI: 10.1016/j.marpolbul.2021.112185.
Srinivasulu M, Maddela NR, Chandra MS, Shankar PC, Rangaswamy V, Prasad R. 2024. Microbe-pesticide interactions: Soil enzyme analysis and bacterial degradation of chlorpyrifos. Environ Chem Ecotoxicol 6: 180-191. DOI: 10.1016/j.enceco.2024.05.004.
Suleman D, Sani A, Suaib S, Ambardin S, Yanti NA, Boer D, Yusuf DN, Faad H. 2022. Isolation and identification of potential bio-inoculants based on phosphate solubilizing molds from different plant rhizospheres. Knowledge E Life Sci 2022: 99-109. DOI: 10.18502/kls.v7i3.11111.
Sun S, Sidhu V, Rong Y, Zheng Y. 2018. Pesticide pollution in agricultural soils and sustainable remediation methods: A review. Curr Pollut Rep 4: 240-250. DOI: 10.1007/s40726-018-0092-x.
Tabasum H, Neelagund SE, Kotresh KR, Gowtham MD, Sulochana N. 2022. Estimation of chlorpyrifos distribution in forensic visceral samples and body fluids using LCMS method. J Forensic Leg Med 91: 102423. DOI: 10.1016/j.jflm.2022.102423.
Tang FHM, Maggi F. 2021. Pesticide mixtures in soil: A global outlook. Environ Res Lett 16 (4): 044051. DOI: 10.1088/1748-9326/abe5d6.
Tian J, Ge F, Zhang D, Deng S, Liu X. 2021. Roles of phosphate solubilizing microorganisms from managing soil phosphorus deficiency to mediating biogeochemical P cycle. Biology 10 (2): 158. DOI: 10.3390/biology10020158.
Timofeeva A, Galyamova M, Sedykh S. 2022. Prospects for using phosphate-solubilizing microorganisms as natural fertilizers in agriculture. Plants 11 (16): 2119. DOI: 10.3390/plants11162119.
Verma J, Jaiswal D, Singh S, Pandey A, Prakash S, Curá J. 2017. Consequence of phosphate solubilising microbes in sustainable agriculture as efficient microbial consortium: A review. Clim Chang Environ Sustain 5 (1): 1-19. DOI: 10.5958/2320-642X.2017.00001.1.
Vimal SR, Singh JS, Arora NK, Singh S. 2017. Soil-plant-microbe interactions in stressed agriculture management: A review. Pedosphere 27 (2): 177-192. DOI: 10.1016/S1002-0160(17)60309-6.
Wang D, Xue B, Wang L, Zhang Y, Liu L, Zhou Y. 2021. Fungus-mediated green synthesis of nano-silver using Aspergillus sydowii and its antifungal/antiproliferative activities. Sci Rep 11 (1): 10356. DOI: 10.1038/s41598-021-89854-5.
Wasti IG, Fui FS, Zhi TQ, Mun CW, Kassim MHS, Dawood MM, Hasan NH, Subbiah VK, Khan FAA, Seelan JSS. 2020. Fungi from dead arthropods and bats of Gomantong Cave, Northern Borneo, Sabah (Malaysia). J Cave Karst Stud 82 (4): 261-275. DOI: 10.4311/2019MB0146.
Wu X, Li J, Zhou Z, Lin Z, Pang S, Bhatt P, Mishra S, Chen S. 2021. Environmental occurrence, toxicity concerns, and degradation of diazinon using a microbial system. Front Microbiol 12: 717286. DOI: 10.3389/fmicb.2021.717286.
Yadav AN, Kour D, Rana KLYadav N, Singh B, Chauhan VS, Rastegari AA, Hesham AE, Gupta VK. 2019. Metabolic engineering to synthetic biology of secondary metabolites production. In: Gupta VK, Pandey A. New and Future Developments in Microbial Biotechnology and Bioengineering: Microbial Secondary Metabolites Biochemistry and Applications. Elsevier, Amsterdam.
Yang T, Li L, Wang B, Tian J, Shi F, Zhang S, Wu Z. 2022. Isolation, mutagenesis, and organic acid secretion of a highly efficient phosphate-solubilizing fungus. Front Microbiol 13: 793122. DOI: 10.3389/fmicb.2022.793122.
Yu J, Lai J, Neal BM, White BJ, Banaik MT, Dai SY. 2023. Genomic diversity and phenotypic variation in fungal decomposers involved in bioremediation of persistent organic pollutants. J Fungi 9 (4): 418. DOI: 10.3390/jof9040418.
Zou L, Xu J, Liu H, Zhou Z, Chen Y, Wang X, Wang H, Zou Y. 2024. The efficiency of enhanced nitrogen and phosphorus removal in a vertical flow constructed wetland using alkaline modified corn cobs as a carbon source. Environ Technol Innov 35: 103690. DOI: 10.1016/j.eti.2024.103690.

Most read articles by the same author(s)

1 2 3 4 > >>