Investigation of the bacterial diversity in fermented mangrove apple (Sonneratia caseolaris) fruit juice kombucha using DNA metabarcoding

##plugins.themes.bootstrap3.article.main##

JELENA ANGEL VISAKHADEVI
SAPTO ANDRIYONO
https://orcid.org/0000-0002-2566-1636
WORO HASTUTI SATYANTINI
NUR IZZATI MOHD NOH

Abstract

Abstract. Visakhadevi JA, Andriyono S, Satyantini WH, Noh NIM. 2024. Investigation of the bacterial diversity in fermented mangrove apple (Sonneratia caseolaris) fruit juice kombucha using DNA metabarcoding. Biodiversitas 25: 3201-3207. Kombucha, a functional beverage produced from the symbiosis between bacteria and yeast, varies in microbial composition and biological activity depending on the raw materials used for fermentation. This study investigated the potential of mangrove apple (Sonneratia caseolaris (L.) Engl.) fruit juice as a novel substrate for kombucha fermentation because of its high nutritional value and underutilization. We analyzed the bacterial composition of kombucha using a molecular metabarcoding approach with the universal 16S rRNA primers 27F (AGA GTT TGA TCM TGG CTC AG) and 1492R (GGT TAC CTT GTT ACG ACT T). The optimal bacterial density was observed on the 8th day of fermentation, with a value of 1.402. The pH progressively decreased during the fermentation period. This study successfully explored the diversity of bacteria in kombucha grown in apple fruit juice. The dominant bacterial taxon was acetic acid bacteria, with 75,009 reads for Acetobacteraceae. At the genus level, Komagataeibacter was predominant, with 74,660 reads, and at the species level, Komagataeibacter saccharivorans was the most abundant, with 67,502 reads. These results suggest mangrove apple fruit juice as the viable substrate for kombucha fermentation that supports a rich microbial community. This study highlights the potential of alternative substrates, such as mangrove apple fruit juice, to enhance kombucha's microbial diversity and health benefits.

##plugins.themes.bootstrap3.article.details##

References
Adzadogo RS, Gbewoyo WSK. 2018. Comparison of physicochemical properties and anti-microbial activities of tea and cocoa-based kombucha. Bioteknologi 15: 33-37. DOI: 10.13057/biotek/c150104.
Akinyemi MO, Ogunremi OR, Adeleke RA, Ezekiel CN. 2024. Probiotic potentials of lactic acid bacteria and yeasts from raw goat milk in Nigeria. Probiot Antimicrob Protein 16 (1): 163-180. DOI: 10.1007/s12602-022-10022.
Andretta M, Almeida T, Ferreira L, Carvalho A, Yamatogi R, Nero L. 2019. Microbial safety status of Serro artisanal cheese produced in Brazil. J Dairy Sci 102 (12): 10790-10798. DOI: 10.3168/jds.2019-16967.
Audrain B, Farag MA, Ryu C-M, Ghigo J-M. 2015. Role of bacterial volatile compounds in bacterial biology. FEMS Microbiol Rev 39 (2): 222-233. DOI: 10.1093/femsre/fuu013.
Barbosa CD, Uetanabaro APT, Santos WCR, Caetano RG, Albano H, Kato R, Cosenza GP, Azeredo A, Góes-Neto A, Rosa CA. 2021. Microbial-physicochemical integrated analysis of kombucha fermentation. LWT 148: 111788. DOI: 10.1016/j.lwt.2021.111788.
Bukin YS, Galachyants YP, Morozov I, Bukin S, Zakharenko A, Zemskaya T. 2019. The effect of 16S rRNA region choice on bacterial community metabarcoding results. Sci Data 6: 190007. DOI: 10.1038/sdata.2019.7.
Cardoso RR, Neto RO, dos Santos D'Almeida CT, do Nascimento TP, Pressete CG, Azevedo L, Martino HSD, Cameron LC, Ferreira MSL, de Barros FAR. 2020. Kombuchas from green and black teas have different phenolic profile, which impacts their antioxidant capacities, antibacterial and antiproliferative activities. Food Res Intl 128: 108782. DOI: 10.1016/j.foodres.2019.108782.
Chakravorty S, Bhattacharya S, Chatzinotas A, Chakraborty W, Bhattacharya D, Gachhui R. 2016. Kombucha tea fermentation: Microbial and biochemical dynamics. Intl J Food Microbiol 220: 63-72. DOI: 10.1016/j.ijfoodmicro.2015.12.015.
Coelho RMD, de Almeida AL, do Amaral RQG, da Mota RN, de Sousa PHM. 2020. Kombucha. Intl J Gastron Food Sci 22: 100272. DOI: 10.1016/j.ijgfs.2020.100272.
Coton M, Pawtowski A, Taminiau B, Burgaud G, Deniel F, Coulloumme-Labarthe L, Fall A, Daube G, Coton E. 2017. Unraveling microbial ecology of industrial-scale Kombucha fermentations by metabarcoding and culture-based methods. FEMS Microbiol Ecol 93 (5): fix048. DOI: 10.1093/femsec/fix048.
Crotti E, Chouaia B, Alma A, Favia G, Bandi C, Bourtiz K, Daffonchio D. 2016. Ecology and physiology. In: Matsushita K, Tayoma H, Tonouchi N, Okamoto-Kainuma A (eds). Acetic Acid Bacteria. Springer, Japan. DOI: 10.1007/978-4-431-55933-7.
Dari DW, Junita D, Arsita Y, Meilina M, Meylani V. 2022. Chemical characteristics of juice of mangrove apple (Sonneratia caseolaris) added with sugar. Intl J Front Life Sci Res 2 (1): 18-28. DOI: 10.53294/ijflsr.2022.2.1.0023.
de Luna Freire MO, Cruz Neto JPR, de Albuquerque Lemos DE, de Albuquerque TMR, Garcia EF, de Souza EL, de Brito Alves JL. 2024. Limosilactobacillus fermentum strains as novel probiotic candidates to promote host health benefits and development of biotherapeutics: A comprehensive review. Probiotics Antimicrobial Proteins 16 (4): 1483-1498. DOI: 10.1007/s12602-024-10235-1.
de Miranda JF, Ruiz LF, Silva CB, Uekane TM, Silva KA, Gonzalez AGM, Fernandes FF, Lima AR. 2022. Kombucha: A review of substrates, regulations, composition, and biological properties. J Food Sci 87 (2): 503-527. DOI: 10.1111/1750-3841.16029.
Emiljanowicz KE, Malinowska-Pa?czyk E. 2020. Kombucha from alternative raw materials-The review. Crit Rev Food Sci Nutr 60 (19): 3185-3194. DOI: 10.1080/10408398.2019.1679714.
Fabricio MF, Mann MB, Kothe CI, Frazzon J, Tischer B, Flôres SH, Ayub MAZ. 2022. Effect of freeze-dried kombucha culture on microbial composition and assessment of metabolic dynamics during fermentation. Food Microbiol 101: 103889. DOI: 10.1016/j.fm.2021.103889.
Ferdous M, Hasan M, Ali M, Mehedi N, Islam M. 2021. Mangrove apple (Sonneratia caseolaris): A promising fruit in Patuakhali coast of Bangladesh. Bangladesh J Agric 9-17. DOI: 10.3329/bjagri.v46i1-6.59969.
Francioli D, Lentendu G, Lewin S, Kolb S. 2021. DNA metabarcoding for the characterization of terrestrial microbiota-pitfalls and solutions. Microorganisms 9 (2): 361. DOI: 10.3390/microorganisms9020361.
Gomes RJ, de Fatima Borges M, de Freitas Rosa M, Castro-Gómez RJH, Spinosa WA. 2018. Acetic acid bacteria in the food industry: Systematics, characteristics and applications. Food Technol Biotechnol 56 (2): 139. DOI: 10.17113/ftb.56.02.18.5593.
Hafsari AR, Farida WN. 2021. pH characteristics of black tea kombucha culture with different sugar types in batch-culture fermentation. Gunung Djati Conference Series, Bandung. [Indonesian]
Harrison K, Curtin C. 2021. Microbial composition of SCOBY starter cultures used by commercial kombucha brewers in North America. Microorganisms 9 (5): 1060. DOI: 10.3390/microorganisms9051060.
Hooi SL, Dwiyanto J, Toh KY, Tan G, Chong CW, Lee JWJ, Lim J. 2023. The microbial composition and functional roles of different kombucha products in Singapore. CyTA-J Food 21 (1): 269-274. DOI: 10.1080/19476337.2023.2190794.
Jayabalan R, Malbaša RV, Lon?ar ES, Vitas JS, Sathishkumar M. 2014. A review on kombucha tea-microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus. Comprehensive Rev Food Sci Food Saf 13 (4): 538-550. DOI: 10.1111/1541-4337.12073.
Kaewkod T, Bovonsombut S, Tragoolpua Y. 2019. Efficacy of kombucha obtained from green, oolong, and black teas on inhibition of pathogenic bacteria, antioxidation, and toxicity on colorectal cancer cell line. Microorganisms 7: 700. DOI: 10.3390/microorganisms7120700.
Kim J, Adhikari K. 2020. Current trends in kombucha: Marketing perspectives and the need for improved sensory research. Beverages 6 (1): 15. DOI: 10.3390/beverages6010015.
Laureys D, Britton SJ, De Clippeleer J. 2020. Kombucha tea fermentation: A review. J Am Soc Brewing Chem 78 (3): 165-174. DOI: 10.1080/03610470.2020.1734150.
Martínez Leal J, Valenzuela Suárez L, Jayabalan R, Huerta Oros J, Escalante-Aburto A. 2018. A review on health benefits of kombucha nutritional compounds and metabolites. CyTA-J Food 16 (1): 390-399. DOI: 10.1080/ 19476337.2017.1410499.
Naufal A, Harini N, Putri DN. 2022. Chemical and sensory characteristics of kombucha instant drink from red dragon fruit peel (Hylocereus polyrhizus) based on sugar concentration and fermentation duration. Food Technol Halal Sci J 5: 137-153. DOI: 10.22219/fths.v5i2.21556.
Nyhan LM, Lynch KM, Sahin AW, Arendt EK. 2022. Advances in kombucha tea fermentation: A review. Appl Microbiol 2 (1): 73-103. DOI: 10.3390/applmicrobiol2010005.
Pédron J, Guyon L, Lecomte A, Blottière L, Chandeysson C, Rochelle-Newall E, Raynaud X, Berge O, Barny M-A. 2020. Comparison of environmental and culture-derived bacterial communities through 16S metabarcoding: A powerful tool to assess media selectivity and detect rare taxa. Microorganisms 8: 1129. DOI: 10.3390/microorganisms8081129.
Putra MAP, Nirmala D, Andriyono S. 2022. Study on the addition of carrageenan stabilizer in the preparation of mangrove rosella syrup. Jurnal Perikanan Unram 12: 480-492. DOI: 10.29303/jp.v12i3.349. [Indonesian]
Reva ON, Zaets IE, Ovcharenko LP, Kukharenko OE, Shpylova SP, Podolich OV, de Vera J-P, Kozyrovska NO. 2015. Metabarcoding of the kombucha microbial community grown in different microenvironments. AMB Express 5: 124. DOI: 10.1186/s13568-015-0124-5.
Rué O, Coton M, Dugat-Bony E, Howell K, Irlinger F, Legras J-L, Loux V, Michel E, Mounier J, Neuvéglise C. 2023. Comparison of metabarcoding taxonomic markers to describe fungal communities in fermented foods. Peer Commun J 3: e97. DOI: 10.24072/pcjournal.321.
Salsabila DI, Machfidho A, Salsabila RA, Anggraini AV, Prasetyo AD, Rahmatullah AA, Ramadhani NH, Maharani DR, Husna AI. 2023. Pedada mangrove (Sonneratta caseolaris) fruit processing as syrup in the Sukorejo Area, Gresik. Sewagati 7 (1): 106-112. DOI: 10.12962/j26139960.v7i1.445.
Santos A, van Aerle R, Barrientos L, Martinez-Urtaza J. 2020. Computational methods for 16S metabarcoding studies using Nanopore sequencing data. Comput Structur Biotechnol J 18: 296-305. DOI: 10.1016/j.csbj.2020.01.005.
Semjonovs P, Ruklisha M, Paegle L, Saka M, Treimane R, Skute M, Rozenberga L, Vikele L, Sabovics M, Cleenwerck I. 2017. Cellulose synthesis by Komagataeibacter rhaeticus strain P 1463 isolated from Kombucha. Appl Microbiol Biotechnol 101: 1003-1012. DOI 10.1007/s00253-016-7761-8.
Sepriana C, Sumiati E, Jekti DSD, Zulkifli L. 2020. Identification and inhibition test of clove plant flower endophytic bacterial isolates (Syzygium aromaticum L.) against pathogenic bacteria. Jurnal Penelitian Pendidikan IPA 6 (1): 101-106. DOI: 10.29303/jppipa.v6i1.340. [Indonesian]
Setiawan E, Efendi R, Herawati N. 2016. Pedada Fruit Utilization (Sonneratia caseolaris) in Jam Making. [Doctoral Dissertation]. University Riau, Riau. [Indonesia]
Susanto A, Rifkowaty EE, Rosmalinda, Kurniawan T, Assorudin Sentap-Dalong, JR, Pawan KD. 2020. Engineering of nanoencapsulant preparation of pedada fruit extract (Sonneratia caseolaris) as a natural antioxidant and the resulting physicochemical properties. Jurnal Saintika Unpam 2 (2): 97-108. [Indonesian]
Tesena P, Korchunjit W, Taylor J, Wongtawan T. 2017. Comparison of commercial RNA extraction kits and qPCR master mixes for studying gene expression in small biopsy tissue samples from the equine gastric epithelium. J Equine Sci 28 (4): 135-141. DOI: 10.1294/jes.28.135.
Tran T, Grandvalet C, Verdier F, Martin A, Alexandre H, Tourdot? Maréchal R. 2020. Microbiological and technological parameters impacting the chemical composition and sensory quality of kombucha. Compre Rev Food Sci Food Saf 19 (4): 2050-2070. DOI: 10.1111/1541-4337.12574.
Walker AW, Martin JC, Scott P, Parkhill J, Flint HJ, Scott KP. 2015. 16S rRNA gene-based profiling of the human infant gut microbiota is strongly influenced by sample processing and PCR primer choice. Microbiome 3: 26. DOI: 10.1186/s40168-015-0087-4.
Wang B, Rutherfurd-Markwick K, Zhang X-X, Mutukumira AN. 2022. Kombucha: Production and microbiological research. Foods 11 (21): 3456. DOI: 10.3390/foods11213456.
Wick RR, Judd LM, Holt KE. 2019. Performance of neural network basecalling tools for Oxford Nanopore sequencing. Genome Biol 20: 129. DOI: 10.1186/s13059-019-1727-y.
Wood J, Osman A, Wade S. 2019. An efficient, cost-effective method for determining the growth rate of sulfate-reducing bacteria using spectrophotometry. MethodsX 6: 2248-2257. DOI: 10.1016/j.mex.2019.09.036.
Yang J, Lagishetty V, Kurnia P, Henning SM, Ahdoot AI, Jacobs JP. 2022. Microbial and chemical profiles of commercial kombucha products. Nutrients 14 (3): 670. DOI: 10.3390/nu14030670.

Most read articles by the same author(s)