Structural stability analysis of rain trees (Samanea saman) subjected to dead, live, and wind loads combination

##plugins.themes.bootstrap3.article.main##

SITI CHUROTUL AINI
ULFA ADZKIA
EFFENDI TRI BAHTIAR
https://orcid.org/0000-0003-0003-5855
M. MIFTAH RAHMAN
AGUS BUONO
LINA KARLINASARI
https://orcid.org/0000-0001-5208-0258

Abstract

Abstract. Aini SC, Adzkia U, Bahtiar ET, Rahman MM, Buono A, Karlinasari L. 2024. Structural stability analysis of rain trees (Samanea saman) subjected to dead, live, and wind loads combination. Biodiversitas 25: 3899-3908. Tree failure can arise from factors associated with load resistance and structural stability at sites of environmental growth. In this study, an investigation was conducted into the structural analysis of standing trees, considering the combination of compression and flexure loads in the adoption of building code guidelines. The objective of this study is to determine the safety factor based on a combined load combination governing the Euler and Ylinen Buckling Stress Method. The study used 50 rain trees (Samanea saman (Jacq.) Merr.). Therefore, to assess the impact of various load combinations on standing trees, including dead, live, and wind loads, three analyses were performed: (1) D + L + W, (2) D + L, and (3) D only. The dead load (D) represents the weight of the crown and stem above the observed section, the live load (L) accounts for activities such as climbing or hanging, and W represents wind loads. The D + L + W load combination induced both compression and bending stresses on the trees, whereas the D + L and D only focused on compression loads. Determining the minimum critical height is crucial in assessing the safety factor and categorizing trees into three groups: unsafe, safe, and very safe. The results indicated that the combined load of D + L + W demonstrated that the minimum critical height resulted from the superposition of compression and bending stresses. This finding underscores the significant role of the wind in the safety of standing trees. Structural stability analysis revealed that 18 trees were unsafe, 30 were safe, and 2 were classified as very safe. This research contributes valuable insights into understanding tree biomechanics and tree characteristics, offering a distinct approach compared to existing methods.

##plugins.themes.bootstrap3.article.details##

References
Afrianto WF, Wati SI, Hidayatullah T. 2021. The suitability assessment of the tree species in the urban parks and urban forest in Kediri City, East Java, Indonesia. Nusantara Biosci 13 (2): 131-139. DOI: 10.13057/nusbiosci/n130201.
Amani-Beni M, Malazi MT, Dehghanian K, Dehghanifarsani L. 2023. Investigating the efects of wind loading on three dimensional tree models using numerical simulation with implications for urban design. Sci Rep 13 (1): 7277. DOI: 10.1038/s41598-023-34071-5.
America Wood Council (AWC). 2018. National Design Specification (NDS) for wood construction. American Wood Council, Virginia.
American Society for Testing and Materials (ASTM). 2002. ASTM D245-00: Standard Practice for Establishing Structural Grades and Related Allowable Properties for Visually Graded Lumber. ASTM Committee, Philadelphia.
American Society for Testing and Materials (ASTM). 2017. ASTM D2395-17: Standard Test Methods for Density and Specific Gravity (Relative Density) of Wood and Wood-Based Materials. ASTM Committee, Philadelphia.
Badel E, Ewers FW, Cochard H, Telewski FW. 2015. Acclimation of mechanical and hydraulic functions in trees: Impact of the thigmomorphogenetic process. Front Plant Sci 6: 266. DOI: 10.3389/fpls.2015.00266.
Bonnesoeur V, Constant T, Moulia B, Fournier M. 2016. Forest trees filter chronic wind-signals to acclimate to high winds. New Phytol 210 (3): 850-860. DOI: 10.1111/nph.13836.
Borisevich SA, Vikhrenko VS. 2018. Evaluation of the drag coefficients of tree crowns by numerical modeling of their free fall. Agric For Meteorol 256-257: 346-352. DOI: 10.1016/j.agrformet.2018.03.020.
Cardia F, Lovatelli A. 2015. Aquaculture Operations in Floating HDPE Cages (A Field Handbook). FAO and Ministry of Agriculture of the Kingdom of Saudi Arabia, Rome.
Central Bureau of Statistics (BPS). 2022. Wind Speed in Bogor in 2022. BPS. https://bogorkota.bps.go.id/subject/151/iklim.html
Coder KD. 2014. Advanced Tree Biology: Tree Anatomy. University of Georgia, Atlanta.
Dahle G, Grabosky J, Kane B, Miesbauer J, Peterson W, Telewski FW, Koeser A, Watson GW. 2014. Tree biomechanics: A white paper from the 2012 international meeting and research summit at the morton arboretum (Lisle, Illinois, U.S.). Arboric Urban For 40 (6): 309-318. DOI: 10.48044/jauf.2014.029.
Dargahi M, Newson T, Moore J. 2019. Buckling behaviour of trees under self-weight loading. Forestry 92 (4): 393-405. DOI: 10.1093/forestry/cpz027.
Directorate General of Highways. 1996. Guidelines for Road Landscape Planning. Ministry of Public Works, Jakarta. [Indonesian]
Duong DV, Schimleck L, Lam TD, Vo HD. 2022. Radial and among-clonal variation of stress-wave velocity, wood density, and mechanical properties in 5-year-old acacia auriculiformis clones. BioResources 17: 2084-2096. DOI: 10.15376/biores.17.2.2084-2096.
Duong DV, Schimleck L. 2022. Prediction of static bending properties of Eucalyptus clones using stress wave measurements ons tanding trees, logs, and small clear specimens. Forest 13 (10): 1728. DOI: 10.3390/f13101728.
Fathi S. 2020. The Reability and Application of Dynamic Tree Stability Inspection. [Dissertation]. University of Sopron, Hungary.
Forest Products Laboratory. 2010. Wood Handbook: Wood as an Engineering Material. United States Department of Agriculture Forest Service, Wisconsin.
Fournier M, Almeras T, Clair B, Gril J. 2013. Biomechanical actions and biological function. In: Gardiner B, Barnett J, Saranpää P, Gril J (eds). The Biology of Reaction Wood. Springer Series in Wood Science. Springer, Berlin. DOI: 10.1007/978-3-642-10814-3_5.
Fundova I, Funda T, Wu HX. 2019. Non-destructive assessment of wood stiffness in Scots pine (Pinus sylvestris L.) and its use in forest tree improvement. Forests 10 (6): 491. DOI: 10.3390/f10060491.
Gardiner B, Berry P, Moulia B. 2016. Review: Wind impacts on plant growth, mechanics and damage. Plant Sci 245: 94-118. DOI: 10.1016/j.plantsci.2016.01.006.
Gonçalves R, Linhares C, Yojo T. 2020. Drag coefficient in urban trees. Trees 37: 133-145. DOI: 10.1007/s00468-019-01951-1.
Harvey JE, Smiljani? M, Scharnweber T et al. 2019. Tree growth influenced by warming winter climate and summer moisture availability in northern temperate forests. Glob Change Biol 26 (4): 2505-2518. DOI: 10.1111/gcb.14966.
Helmanto H, Damayanti F, Rachmadiyanto AN. 2022. A safety factor old trees Pterocarpus indicus Willd. in Bogor Botanic Gardens. IOP Conf Ser: Earth Environ Sci 950: 012009. DOI: 10.1088/1755-1315/950/1/012009.
Horváthová E, Badura T, Duckhova H. 2021. The value of the shading function of urban trees: A replacement cost approach. Urban For Urban Green 62: 127166. DOI: 10.1016/j.ufug.2021.127166.
Hui KKW, Wong MS, Kwok CYT, Li H, Abbas S, Nichol JE. 2022. Unveiling falling urban trees before and during Typhoon Higos (2020): Empirical case study of potential structural failure using Tilt Sensor. Forest 13 (2): 359. DOI: 10.3390/f13020359.
Iizuka K, Yonehara T, Itoh M, Kosugi Y. 2018. Estimating tree height and Diameter at Breast Height (DBH) from digital surface models and orthophotos obtained with an unmanned aerial system for a Japanese Cypress (Chamaecyparis obtusa) Forest. Remote Sens 10 (1): 13. DOI: 10.3390/rs10010013.
Indonesian National Standard (SNI). 2013. SNI 7973: Design Specifications for Timber Structures. National Standardization Agency, Jakarta. [Indonesian]
International Organization for Standardization (ISO). 1975. ISO 2533-1975: Standard Atmosphere. ISO Technical Committee, Switzerland.
Jackson TD, Sethi S, Dellwik E. 2021. The motion of trees in the wind: A data synthesis. Biogeosciences 18 (13): 4059-4072. DOI: 10.5194/bg-18-4059-2021.
Jackson TD, Shenkin AF, Majalap N, Bin Jami J, Bin Sailim A, Reynolds G, Coomes DA, Chandler CJ, Boyd DS, Burt A, Wilkes P, Disney M, Malhi Y. 2020. The mechanical stability of the world’s tallest broadleaf trees. Biotropica 53 (1): 110-120. DOI: 10.1111/btp.12850.
James K. 2014. Tree stability in wind storms-Open grown trees in urban areas. Arboricultural Association’s 48th Annual Amenity Arboriculture Conference. Royal Holloway, University of London. 14-17 September 2014. DOI: 10.13140/2.1.4295.5525.
Jansson M. 2014. Green space in compact cities: The benefits and values of urban ecosystem services in planning. Nord J Arch Res 2: 139-160.
Kadry D, Divos F, Buza AK, Bejo L, Kolarik J. 2019. Tree assessor-instrumental tree assessment advance-tree assessment-manual for professional. Dobre Kadry Research and Training Center, Ltd./ Fakkop Enterprise, Wroclaw.
Karlinasari L, Adzkia U, Puspitasari T, Nandika D, Nugroho N, Syafitri UD, Siregar IZ. 2021. Tree morphometric relationships and dynamic elasticity properties in tropical rain trees (Samanea saman Jacq. Merr). Forest 12 (12): 1711. DOI: 10.3390/f12121711.
Karlinasari L, Bahtiar ET, Kadir ASA, Adzkia U, Nugroho N, Siregar IZ. 2023. Structural analysis of self-weight loading standing trees to determine critical buckling height. Sustainability 15 (7): 6075. DOI: 10.3390/su15076075.
Kitagawa K, Iwama S, Fukui S, Sunaoka Y, Yazawa H, Usami A, Naramoto M, Uchida T, Saito S, Mizunaga H. 2015. Effects of components of the leaf area distribution on drag relations for Cryptomeria japonica and Chamaecyparis obtusa. Eur J For Res 134: 403-414. DOI: 10.1007/s10342-014-0859-6.
Kitenberga M, Š?epsts G, Vuguls J, Elferts D, Jaunslaviete I, Jansons ?. 2021. Tree- and stand-scale factors shape the probability of wind damage to birch in hemiboreal forests. Silva Fennica 55 (2): 10483. DOI: 10.14214/sf.10483.
Koizumi A, Shimizu M, Sasaki Y, Hirai T. 2016. In situ drag coefficient measurements for rooftop trees. J Wood Sci 62: 363-369. DOI: 10.1007/s10086-016-1556-5.
Li F, Liu X, Zhang X, Zhao D, Liu H, Zhou C, Wang R. 2016. Urban ecological infrastructure: An integrated network for ecosystem services and sustainable urban systems. J Clean Prod 163 (S1): S12-S18. DOI: 10.1016/j.jclepro.2016.02.079.
Li Z, Hao Y, Kopp GA, Wu C-H. 2022. Identification of multimodal dynamic characteristics of a decurrent tree with application to a model-scale wind tunnel study. Appl Sci 12 (15): 7432. DOI: 10.3390/app12157432.
Linhares CSF, Gonçalves R, Martins LM, Knapic S. 2021. Structural stability of urban trees using visual and instrumental techniques: A review. Forest 12 (12): 1752. DOI: 10.3390/f12121752.
MacFarlane DW, Kane B. 2017. Neighbour effects on tree architecture: functional trade-offs balancing crown competitiveness with wind resistance. Funct Ecol 31 (8): 1624-1636. DOI: 10.1111/1365-2435.12865.
Manickathan L, Defraeye T, Allegrini J, Derome D, Carmeliet J. 2018. Comparative study of flow field and drag coefficient of model and small natural trees in a wind tunnel. Urban For Urban Green 35: 230-239. DOI: 10.1016/j.ufug.2018.09.011.
Mardiatmoko G. 2016. Allometric equations for predicting above and below-ground biomass of young rain tree [Albizia saman (jacq.) Merr.] to handle climate change. Asian J Microbiol Biotechnol Environ Sci 18 (4): 821-830.
McTague JP, Weiskittel A. 2020. Evolution, history, and use of stem taper equations: A review of their development, application, and implementation. Can J For Res 51: 210-235. DOI: 10.1139/cjfr-2020-0326.
Miyashita A, Suzuki S. 2021. A method for measuring the forces acting on a tree trunk using strain gauges. PLoS One 16 (1): e0245631. DOI: 10.1371/journal.pone.0245631.
Moore J, Gardiner B, Sellier D. 2018. Tree mechanins and wind loading. In: Geitmann A, Gril J (eds). Plant Biomechanics. Springer, Cham. DOI: 10.1007/978-3-319-79099-2_4.
Moulia B, Bastien R, Chauvet-Thiry H, Leblance-Fournier N. 2019. Posture control in land plants: Growth, position sensing, proprioception, balance, and elasticity. J Exp Bot 70 (14): 3467-3494. DOI: 10.1093/jxb/erz278.
Mulyasari I, Purbowati. 2018. Upper arm circumference and ulnar length were used as anthropometric parameters to estimate the body weight and height of adults. Jurnal Gizi Indonesia 7 (1): 30-36. DOI: 10.14710/jgi.7.1.30-36. [Indonesian]
N?mec P. 2015. Comparison of modern forest inventory method with the common method for management of tropical rainforest in the Peruvian Amazon. J Trop For Sci 27 (1): 80-91.
O’Brien L, De Vreese R, Kern M, Sievänen T, Stojanova B, Atmi? E. 2017. Cultural ecosystem benefits of urban and peri-urban green infrastructure across different European countries. Urban For Urban Green 24: 236-248. DOI: 10.1016/j.ufug.2017.03.002.
Ow LF, Ghosh S, Yusof MLM. 2019. Growth of Samanea saman: Estimated cooling potential of this tree in an urban environment. Urban For Urban Green 41: 264-271. DOI: 10.1016/j.ufug.2019.03.021.
Ow LF, Ghosh S. 2017. Urban tree growth and their dependency on infiltration rates in structural soil and structural cells. Urban For Urban Green 26: 41-47. DOI: 10.1016/j.ufug.2017.06.005.
Ow LF, Yusof MLM. 2018. Stability of four urban tree species in engineered and regular urban soil blends. J Urban Ecol 4 (1): juy014. DOI: 10.1093/jue/juy014.
Palace MW, Sullivan FB, Ducey MJ, Treuhaft RN, Herrick C, Shimbo JZ, Mota-E-Silva J. 2015. Estimating forest structure in a tropical forest using field measurements, a synthetic model and discrete return lidar data. Rem Sens Environ 161: 1-11. DOI: 10.1016/j.rse.2015.01.020.
Puspitasari T. 2021. Biomechanics of the Rain Tree (Samanea saman (Jacq.) Merr) in the IPB Dramaga Campus Landscape: Morphometric, Visual, and Mechanical Analysis. [Bachelor's thesis]. IPB, Bogor. [Indonesian]
Rahardjo H, Harnas FR, Indrawan IGB, Leong EC, Tan PY, Fong YK, Ow LF. 2014. Understanding the stability of Samanea saman trees through tree pulling, analytical calculations and numerical models. Urban For Urban Green 13 (2): 355-364. DOI: 10.1016/j.ufug.2013.12.002.
Salekin S, Catalán CH, Boczniewicz D, Phiri D, Morgenroth J, Meason DF, Mason EG. 2021. Global tree taper modelling: A review of applications, methods, functions, and their parameters. Forests 12 (7): 913. DOI: 10.3390/f12070913.
Schimleck L, Dahlen J, Apiolaza LA, Downes G, Emms G, Evans R, Moore J, Pâques L, Van den Bulcke J, Wang X. 2019. Non-destructive evaluation techniques and what they tell us about wood property variation. Forests 10 (9): 728. DOI: 10.3390/f10090728.
Seki M. 2023. Predicting stem taper using artificial neural network and regression models for Scots pine (Pinus sylvestris L.) in northwestern Türkiye. Scandinavian J For Res 38 (1-2): 97-104. DOI: 10.1080/02827581.2023.2189297.
Spatz H-C, Bruechert F. 2000. Basic biomechanics of self-supporting plants: Wind and gravitational loads on Norway spruce trees. For Ecol Manag 135 (1-3): 33-44. DOI: 10.1016/S0378-1127(00)00296-6.
Telewski FW, Moore JR. 2016. Trait selection to improve wind-firmness in trees. CABI Rev 11 (050): 1-10. DOI: 10.1079/pavsnnr201611050.
Tiwary A, Williams ID, Heidrich O, Namdeo A, Bandaru V, Calfapietra C. 2016. Development of multi-functional streetscape green infrastructure using a performance index approach. Environ Pollut 208 (Pt A): 209-220. DOI: 10.1016/j.envpol.2015.09.003.
Urhan OS, Kolpak SE, Jayawicakrama KJS, Howe GT. 2014. Early genetic selection for wood stiffness in juvenile Douglas-fir and western hemlock. Forest Ecology and Management 320: 104-117. DOI: 10.1016/j.foreco.2014.02.020.
Vaughan D, Auty D, Dahlen J, Meador AJS, Mackes KH. 2021. Modeling variation in wood stiffness of Pinus ponderosa using static bending and acoustic measurements. Forestry: Intl J For Res 94 (2): 232-243. DOI: 10.1093/forestry/cpaa030.
Ver Planck NR, MacFarlane DW. 2019. Branch mass allocation increases wind throw risk for Fagus grandifolia. Forestry: Intl J For Res 92 (4): 490-499. DOI: 10.1093/forestry/cpz001.
Wolf KL, Lam ST, McKeen JK, Richardson GRA, van den Bosh M, Bardekjian AC. 2020. Urban trees and human health: A scooping review. Intl J Environ Res Public Health 17 (12): 4371. DOI: 10.3390/ijerph17124371.
Yang M, Défossez P, Danjon F, Fourcaud T. 2014. Tree stability under wind: simulating uprooting with root breakage using a finite element method. Ann Bot 114 (4): 695-709. DOI: 10.1093/aob/mcu122.
Yang S-I, Burkhart HE. 2020. Robustness of parametric and nonparametric fitting procedures of tree-stem taper with alternative definitions for validation data. J For 118 (6): 576-583. DOI: 10.1093/jofore/fvaa036.
Zhang X, Wang H, Chhin S, Zhang J. 2020. Effects of competition, age, and climate on the tree slenderness of Chinese fir plantations in Southern China. For Ecol Manag 458: 117815. DOI: 10.1016/j.foreco.2019.117815.

Most read articles by the same author(s)