Architectural and physical properties of fungus comb from subterranean termite Macrotermes gilvus (Isoptera: Termitidae) mound

##plugins.themes.bootstrap3.article.main##

DINA TIARA KUSUMAWARDHANI
DODI NANDIKA
LINA KARLINASARI
ARINANA
IRMANIDA BATUBARA

Abstract

Abstract. Kusumawardhani DT, Nandika D, Karlinasari L, Arinana, Batubara I. 2021. Architectural and physical properties of fungus comb from subterranean termite Macrotermes gilvus (Isoptera: Termitidae) mound. Biodiversitas 22: 1627-1634. Subterranean termite Macrotermes gilvus Hagen (Isoptera; Termitidae) is the most widely distributed termite species in Indonesia. This termite species has a unique habit of making fungus comb inside their nest. The fungus comb is a growth substrate for Termitomyces fungi, which provides a nutrient source for the termite. However, there is a lack of scientific information regarding the architecture and physical properties of fungus combs of M. gilvus. A study was conducted to determine the architecture and physical properties of fungus combs of M. gilvus found in Yanlappa Experimental Forest, Bogor, West Java Province, Indonesia. The fungus combs were collected from six of twenty-two nests of M. gilvus found in the rectangular sample plot (150 x 250 m) in the area. The results showed that the fungus comb of M. gilvus was brain-shaped with 44.17 ± 7.36 cm3 in volume and had burrows that interconnected from the surface (6.20 ± 1.06 mm in diameter) to the base of the fungus comb structure (4.32 ± 0.91 mm in diameter). The burrows were interconnected with each other to support cross-ventilation in the fungus comb. White nodules of Termitomyces fungi were found in the fungus comb. Architecturally, the fungus comb consisted of two structural parts, namely fresh comb on the upper part and old comb on the lower part of the fungus comb. The fresh comb possessed a larger volume (48.33 ± 2.89 cm3) and smoother texture (177.88-977.50 nm) than the old comb (40.00 ± 8.66 cm3, 407.49-6762.62 nm). The fresh comb had a larger volume (48.33 ± 2.89 cm3) than the old comb (40.00 ± 8.66 cm3). It was also found a smoother texture in the fresh comb (177.88-977.50 nm) than in the old comb (407.49-6762.62 nm). In terms of color, the fresh comb was darker (reddish) than the old comb (yellowish white). In addition, the density of the old comb was higher (0.87 ± 0.11 g/cm3) than the fresh comb (0.77 ± 0.13 g/cm3) so that the old comb was able to function as a strong foundation for fungus comb.

##plugins.themes.bootstrap3.article.details##

References
[ASTM] American Society for Testing Material. 2001. ASTM D1102-84: Standard Test Method for Ash Analysis of Wood Products. ASTM International, West Conshocken.
[ASTM] American Society for Testing Material. 2014. ASTM E-871: Test Method for Moisture in the Analysis of Particulate Wood Fuels.
Ahmad M. 1958. Key to the Indi-Malayan termites. Biologia 4: 33-198.
Anwar K, Sudirman LI, Nandika D. 2020. Comb Establishment of fungus-growing termites species Macrotermitinae (Isoptera: Termitidae) with Termitomyces cylindricus (Basidiomycota: Agaricales) basidiospores. Oriental Insects. https://doi.org/10.1080/00305316.2020.1762775.
Arifin Z, Dahlan Z, Sabaruddin, Irsan C, Hartono Y. 2016. Impact of the presence of subterranean termites Macrotermes gilvus (Termitidae) to physico-chemical soil modification on the rubber plantation land. Journal of Ecology and The Natural Environment 8: 13–19. https://doi.org/10.5897/JENE2016.0554.
Arinana, Aldina R, Nandika D, Rauf A, Harahap IS, Sumertajaya IM, Bahtiar ET. 2016. Termite diversity in urban landscape, South Jakarta, Indonesia. Insects 7: 1-18. https://doi.org/10.3390/insects7020020.
Arshad M, Schnitzer M. 2020. The chemistry of a termite fungus comb. Plant and Soil 98: 247–256. https://www.jstor.org/stable/42936164.
Buzea C, Pacheco II, Robbie K. 2007. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2: 17–71. https://doi.org/10.1116/1.2815690.
Cardoso CR, Oliveira TJP, Santana Junior JA, Ataíde CH. 2013. Physical characterization of sweet sorghum bagasse, tobacco residue, soy hull and fiber sorghum bagasse particles: density, particle size and shape distributions. Powder Technology 245: 105–114. https://doi.org/10.1016/j.powtec.2013.04.029.
Chang S, Quimio T. 1982. Tropical Mushrooms: Biological Nature and Cultivation Methods. The Chinese University Press, Hong Kong.
Christie R. 2001. Colour Chemistry. The Royal Society of Chemistry Science Park, Cambridge.
Darlington JPEC. 1997. Comparison of nest structure and caste parameters of sympatric species of Odontotermes (Termitidae, Macrotermitinae) in Kenya. Insectes Sociaux 44: 393–408.
De Fine Licht HH, Boomsma JJ, Aanen DK. 2006. Presumptive horizontal symbiont transmission in the fungus-growing termite Macrotermes natalensis. Molecular Ecology 15: 3131–3138. https://doi.org/10.1111/j.1365-294X.2006.03008.x.
Duke JA. 1992. Handbook of Biologically Active Phytochemicals and Their Activities. CRC Press, Tokyo.
Hadi YS, Efendi M, Massijaya MY, Pari G, Arinana. 2016. Resistance of smoked glued laminated lumber to subterranean termite attack. Forest Products Journal 66: 480–484. https://doi.org/10.13073/FPJ-D-15-00085.
Hasan DB, Sinulingga K. 2017. Sintesis dan karakterisasi nano partikel silika dari abu ampas tebu sebagai filler alumunium. Jurnal Einstein 2: 1–6.
Hr?ková M, Koleda Peter, Koleda Pavol, Barcík Š, Štefková J. 2018. Color change of selected wood species affected by thermal treatment and sanding. BioResources 13: 8956–8975. https://doi.org/10.15376/biores.13.4.8956-8975.
Ismayana A, Maddu A, Saillah I, Mafquh E, Siswi Indrasti N. 2017. Sintesis nanosilika dari abu ketel industri gula dengan metode ultrasonikasi dan penambahan surfaktan. Jurnal Teknologi Industri Pertanian 27: 228–234. https://doi.org/10.24961/j.tek.ind.pert.2017.27.2.228.
Jouquet P, Barré P, Lepage M, Velde B. 2005. Impact of subterranean fungus-growing termites (Isoptera, Macrotermitiane) on chosen soil properties in a West African savanna. Biology and Fertility of Soils 41: 365–370. https://doi.org/10.1007/s00374-005-0839-6.
Konaté S, Le Roux X, Verdier B, Lepage M. 2003. Effect of underground fungus-growing termites on carbon dioxide emission at the point- and landscape-scales in an African savanna. Functional Ecology 17: 305–314. https://doi.org/10.1046/j.1365-2435.2003.00727.x.
Korb J. 2011. Termite mound architecture from function to construction. In: Bignell D, Roisin Y, Lo N (eds) Biology Of Termites: A Modern Synthesis, 2nd Edn. Springer, Dordrecht.
Li H, Yelle DJ, Li C, Yang M, Ke J, Zhang R, Liu Y, Zhu N, Liang S, Mo X, Ralph J, Currie CR, Mo J. 2017. Lignocellulose pretreatment in a fungus-cultivating termite. Proceedings of the National Academy of Sciences of the United States of America 114: 4709–4714. https://doi.org/10.1073/pnas.1618360114.
McArthur MJ, Atshaves BP, Frolov A, Foxworth WD, Kier AB, Schroeder F. 1999. Cellular uptake and intracellular trafficking of long chain fatty acids. Journal of Lipid Research 40: 1371–1383. https://doi.org/10.1016/S0022-2275(20)33379-4.
Meyer VW, Crewe RM, Braack LEO, Groeneveld HT, Van der Linde MJ. 2000. Intracolonial demography of the mound-building termite Macrotermes natalensis (Haviland) (Isoptera, Termitidae) in the northern Kruger National Park, South Africa. Insectes Sociaux 47: 390–397. https://doi.org/10.1007/pl00001736.
Nandika D, Yudi R, Farah D. 2015. Rayap: Biologi dan Pengendaliannya, Edisi 2 . Muhammadiyah University Press, Sukarta.
Nawawi DS, Wicaksono SH, Rahayu IS. 2013. Kadar zat ekstraktif dan susut kayu nangka (Arthocarpus heterophyllus) dan mangium (Acacia mangium). Jurnal Ilmu dan Teknologi Kayu Tropis 11: 46-54.
Nobre T, Aanen DK. 2012. Fungiculture or termite husbandry? the ruminant hypothesis. Insects 3: 307–323. https://doi.org/10.3390/insects3010307.
Omoniyi TE, Olorunnisola A. 2014. Experimental characterisation of bagasse biomass material for energy production. International Journal of ENgineering and Technology 4: 582–589.
Otani S, Challinor VL, Kreuzenbeck NB, Kildgaard S, Christensen KS, Larsen LLM, Aanen DK, Rasmussen SA, Beemelmanns C, Poulsen M. 2019. Disease-free monoculture farming by fungus-growing termites. Scientific Reports 9: 1–10. https://doi.org/10.1038/s41598-019-45364-z.
Padmini E, Valarmathi A, Rani M. 2010. Comparative analysis of chemical composition and antibacterial activities of Mentha spicata and Camellia sinensis. Asian J. Exp. Biol. Sci 1: 772–781.
Qian Q, Li S, Wen H-A. 2011. Fungal diversity of fungus comb in termite nests. Mycosystema 30: 556–565.
Rouland-Lefèvre C. 2000. Symbiosis with fungi. In: In: Abe T, Bignell DE, Higashi M (eds) Termites: Evolution, Sociality, Symbiosis, Ecology. Kluwer, Dordrecht.
Rouland-Lefèvre C, Inoue T, Johjima T. 2006. Termitomyces/termite interactions. Soil Biology 6: 335-350. https://doi.org/10.1007/3-540-28185-1_14.
Sawhasan P, Worapong J, Flegel TW, Vinijsanun T. 2012. Fungal partnerships stimulate growth of Termitomyces clypeatus stalk mycelium in vitro. World Journal of Microbiology and Biotechnology 28: 2311–2318. https://doi.org/10.1007/s11274-012-1038-x.
Selvya, Nainggolan H, Gultom J, Wirjosentono B. 2013. Studi pemanfaatan limbah ikan dari tempat pelelangan ikan (TPI) dan pasar tradisional Sibolga sebagai bahan baku kompos. Jurnal Teknologi Kimia Unimal 2: 90–99.
Singh K, Muljadi BP, Raeini AQ, Jost C, Vandeginste V, Blunt MJ, Theraulaz G, Degond P. 2019. The architectural design of smart ventilation and drainage systems in termite nests. Science Advances 5: 1–12. https://doi.org/10.1126/sciadv.aat8520.
Sjöstrom E. 1981. Wood Chemistry: Fundamentals and Applications. Academic Press, New York.
Subekti N. 2010. Kelimpahan, Sebaran, dan Arsitektur Sarang serta Ukuran Populasi Rayap Tanah. [Dissertation]. IPB University, Bogor. [Indonesian]
Subekti N, Duryadi D, Nandika D, Surjokusumo S, Anwar S. 2008. Distribution and morphology characteristic of Macrotermes gilvus Hagen in the natural habitat. Jurnal Ilmu dan Teknologi Hasil Hutan 1: 27–33.
Sudarmadji S, Haryono B, Suhardi. 1989. Analisis Bahan Makanan dan Pertanian. Liberty, Yogyakarta.
[TAPPI] Technical Association of The Pulp and Paper Industy. 1996. TAPPI Test Methods. TAPPI Press, Atlanta.
Tho YP. 1992. Termites of Peninsular Malaysia. Forest Research Institute Malaysia, Kepong.
Tiyabooncjai W . 2003. Chitosan nanoparticles: A promising system for drug delivery. Naresuan University Journal 11: 51–66.
To NB, Nguyen YT-K, Moon JY, Ediriweera MK, Cho SK. 2020. Pentadecanoic acid, an odd-chain fatty acid, suppresses the stemness of MCF-7/SC human breast cancer stem-like cells through JAK2/STAT3 signaling. Nutrients 12: 1–20. https://doi.org/10.3390/nu12061663.
Winarko. 1997. Kimia Pangan dan Gizi. PT. Gramedia, Jakarta.
Zulfikar M, Carolia N. 2019. Efektivitas acetaminophen dan antidepresan dalam tatalaksana nyeri. Majority 8: 221–226.

Most read articles by the same author(s)