Diversity of bacterial isolates as biocontrol agents against Fusarium oxysporum f. sp. lycopersici

##plugins.themes.bootstrap3.article.main##

IRWANDHI
https://orcid.org/0009-0009-4897-4940
NUR PRIHATININGSIH
SILVA ABRAHAM
MUHSON ISRONI
RIZKA GITAMI SATIVA
NADIA NURANIYA KAMALUDDIN
FIQRIAH HANUM KHUMAIRAH
HARIS MAULANA
EMMA TRINURANI SOFYAN
TUALAR SIMARMATA

Abstract

Abstract. Irwandhi, Prihatiningsih N, Abraham S, Isroni M, Sativa RG, Kamaluddin NN, Khumairah FH, Maulana H, Sofyan ET, Simarmata T. 2024. Diversity of bacterial isolates as biocontrol agents against Fusarium oxysporum f. sp. lycopersici. Biodiversitas 25: 3403-3410. Fusarium oxysporum f. sp. lycopersici (FOL) is a soil-borne pathogen causing fusarium wilt in tomato plants, leading to significant crop losses worldwide. The severity of this disease is likely to increase with climate change, as rising temperatures and soil salinization create more favorable conditions for the pathogen. This study focused on characterizing bacterial isolates that could become biocontrol agents resilient to climate stress and identifying them through molecular techniques. Biochemical assays assessed the bacteria's ability to fix nitrogen and produce protease enzymes, siderophores, and hydrogen cyanide (HCN), which are essential for antagonizing FOL. The biological efficacy of these isolates was determined through antagonism assays, followed by molecular identification of the most effective isolates. A Completely Randomized Design (CRD) was used, involving six bacterial isolates and a control group with four replications for each treatment. All six isolates demonstrated the ability to fix nitrogen and produce protease enzymes, siderophores, and HCN, successfully inhibiting the growth of FOL. Among these, isolate R18 exhibited the strongest inhibition zone (55.55%), significantly reducing the mycelium weight to 0.0417 g, and showed tolerance to both temperature and salinity stress. Through 16S rRNA sequencing molecular identification, R11 was identified as Bacillus megaterium, and R18 was identified as Bacillus albus. These results highlight the potential of these bacterial isolates, especially R18, as effective biocontrol agents for managing fusarium wilt in tomato plants under changing climate conditions.

##plugins.themes.bootstrap3.article.details##

References
Abada EA, Elbaz RM, Sonbol H, Korany SM. 2021. Optimization of cellulase production from Bacillus albus (MN755587) and its involvement in bioethanol production. Polish J Environ Stud 30 (3): 2459-2466. DOI: 10.15244/pjoes/129697.
Abro MA, Jatoi GH, Poussio GB, Koondhar N, Figari IM, Arshad WR. 2022. The efficient use of different fungal bioagent for eco-friendly management of fusarium wilt disease of tomato in Sindh, Pakistan. Pak J Phytopathol 34: 103-115. DOI: 10.33866/phytopathol.034.02.0718.
Al-Askar AA, Saber WI, Ghoneem KM, Hafez EE, Ibrahim AA. 2021. Crude citric acid of Trichoderma asperellum: Tomato growth promotor and suppressor of Fusarium oxysporum f.sp. lycopersici. Plants 10 (2): 222. DOI: 10.3390/plants10020222.
Arkhipov A, Carvalhais LC, Schenk PM. 2023. PGPR control Phytophthora capsici in tomato through induced systemic resistance, early hypersensitive response and direct antagonism in a cultivar-specific manner. Eur J Plant Pathol 167 (4): 811-832. DOI: 10.1007/s10658-023-02734-8.
Arsih DW, Panggeso J, Lakani I. 2015. The test of betel leaf extract and Trichoderma sp. inhibit growth in Fusarium oxysporum f.sp lycopersici couses of fusarium wilt on tomato plants. Nat Sci J Sci Technol 4 (3): 355-368. DOI: 10.22487/25411969.2015.v4.i3.5141. [Indonesian]
Babiker BM, Ahmed MAE, Ibrahim HM. 2016. Isolation and identification of catalase producing Bacillus spp.: A comparative study. Intl J Adv Res 4 (2): 1206-1211.
Basurto-Cadena MGL, Vázquez-Arista M, García-Jiménez J, Salcedo-Hernández R, Bideshi DK, Barboza-Corona JE. 2012. Isolation of a new Mexican strain of Bacillus subtilis with antifungal and antibacterial activities. Sci World J 212: 384978. DOI: 10.1100/2012/384978.
Bhagat D, Sharma P, Sirari A, Kumawat KC. 2014. Screening of Mesorhizobium spp. for control of fusarium wilt in chickpea in vitro conditions. Intl J Curr Microbiol Appl Sci 3 (4): 923-930.
Biju VC, Fokkens L, Houterman PM, Rep M, Cornelissen BJ. 2017. Multiple evolutionary trajectories have led to the emergence of races in Fusarium oxysporum f. sp. lycopersici. Appl Environ Microbiol 83 (4): e02548-16. DOI: 10.1128/AEM.02548-16.
Bubici GM, Kaushal I, Prigigallo G, Carmen M, Jesus. 2019. Biological control agents against fusarium wilt of banana. Front Microbiol 10: 616-620. DOI: 10.3389/fmicb.2019.00616.
Clermont-Dauphin C, Suwannang N, Grünberger O, Hammecker C, Maeght JL. 2010. Yield of rice under water and soil salinity risks in farmers’ fields in northeast Thailand. Field Crop Res 118 (3): 289-296. DOI: 10.1016/j.fcr.2010.06.009.
El-Rahman A, Shaheen HA, El-Aziz A, Rabab M, Ibrahim DS. 2019. Influence of hydrogen cyanide-producing rhizobacteria in controlling the crown gall and root-knot nematode, Meloidogyne incognita. Egypt J Biol Pest Control 29: 41. DOI: 10.1186/s41938-019-0143-7.
Hu X, Roberts DP, Xie L, Liao X. 2013. Bacillus megaterium A6 suppresses Sclerotinia sclerotiorum on oilseed rape in the field and promotes oilseed rape growth. Crop Protect 52: 151-158. DOI: 10.1016/j.cropro.2013.05.018.
Islam MR, Sultana T, Joe MM, Yim W, Cho JC, Sa T. 2013. Nitrogen? fixing bacteria with multiple plant growth?promoting activities enhance growth of tomato and red pepper. J Basic Microbiol 53 (12): 1004-1015. DOI: 10.1002/jobm.201200141.
Istiqomah D, Nurtiati N, Irwandhi I, Rakhman HI. 2022. Root bacterial communities and the potential of Polygala paniculata as a botanical pesticide on tomato plants. Agronomika: Jurnal Budidaya Pertanian Berkelanjutan 21: 15-20. DOI: 10.20884/1.agronomika.2022.21.1.5498.
Jangir M, Pathak R, Sharma S, Sharma S. 2018. Biocontrol mechanisms of Bacillus sp., isolated from tomato rhizosphere, against Fusarium oxysporum f.sp. lycopersici. Biol Control 123: 60-70. DOI: 10.1016/j.biocontrol.2018.04.018.
Kamal N, Liu Z, Qian C, Zhong X. 2021. Improving hybrid Pennisetum growth and cadmium phytoremediation potential by using Bacillus megaterium BM18-2 spores as biofertilizer. Microbiol Res 242: 126594. DOI: 10.1016/j.micres.2020.126594.
Khairah M, Mubarik NR, Manaf LA. 2023. Bacterial selection and characterization of chitinase enzyme from bacteria controlling Fusarium proliferatum. Biodiversitas 24 (3): 1926-1933. DOI: 10.13057/biodiv/d240370.
Kim YS, Balaraju K, Jeon Y. 2016. Effects of rhizobacteria Paenibacillus polymyxa APEC136 and Bacillus subtilis APEC170 on biocontrol of postharvest pathogens of apple fruits. J Zhejiang Univ Sci 17 (12): 931. DOI: 10.1631/jzus.B1600117.
Kishor R, Saratale GD, Saratale RG, Bharagava RN. 2021. Efficient degradation and detoxification of methylene blue dye by a newly isolated ligninolytic enzyme producing bacterium Bacillus albus MW407057. Colloids Surf B Biointerfaces 206: 111947. DOI: 10.1016/j.colsurfb.2021.111947.
Lal A, Cheeptham N. 2012. Starch agar protocol. Am Soc Microbiol 1: 1-9.
Lee MH, Lee J, Nam YD, Yi SH. 2016. Characterization of antimicrobial lipopeptides produced by Bacillus sp. LM7, a Korean traditional fermented soybean food. Intl J Food Microbiol 221: 12-18. DOI: 10.1016/j.ijfoodmicro.2015.12.010.
Li F, Xiong XS, Yang Y, Wang J, Wang M, Tang JW, Liu QH, Wang L, Gu B. 2021. Effects of NaCl concentrations on growth patterns, phenotypes associated with virulence, and energy metabolism in Escherichia coli BW25113. Front Microbiol 12: 705326. DOI: 10.3389/fmicb.2021.705326.
Masi C, Gemechu G, Tafesse M. 2021. Isolation, screening, characterization, and identification of alkaline protease-producing bacteria from leather industry effluent. Ann Microbiol 71: 24. DOI: 10.1186/s13213-021-01631-x.
McGovern RJ. 2015. Management of tomato diseases caused by Fusarium oxysporum. Crop Protect 73: 78-92. DOI: 10.1016/j.cropro.2015.02.021.
Mugiastuti E, Suprayogi S, Prihatiningsih N, Soesanto L. 2022. The ability of Pseudomonas spp. Fluoride and Bacillus spp. in controlling corn sheath blight. Jurnal Agro 9 (2): 162-177. DOI: 10.15575/18819.
Murali A, Patel S. 2017. The effect of different heavy metal acetate solutions on the inhibition of catalase enzyme. J S Carolina Acad Sci 15 (2): 68-74.
Nascimento FX, Herna?ndez AG, Rossi MJ. 2020. Plant growth-promoting activities and genomic analysis of the stress-resistant Bacillus megaterium STB1, a bacterium of agricultural and biotechnological interest. Biotechnol Rep 25: e00406. DOI: 10.1016/j.btre.2019.e00406.
Olanrewaju OS, Glick BR, Babalola OO. 2017. Mechanisms of action of plant growth promoting bacteria. World J Microbiol Biotechnol 33 (11): 197. DOI: 10.1007/s11274-017-2364-9.
Pambudi A, Susanti S, Priambodo TW. 2017. Isolation and characterization of rice field soil bacteria in Sukawali Village and Belimbing Village, Tangerang Regency. Al-Kauniyah 10 (2): 105-113. DOI: 10.15408/kauniyah.v10i2.4907. [Indonesian]
Paramanandham P, Rajkumari J, Pattnaik S, Busi S. 2017. Biocontrol potential against Fusarium oxysporum f. sp. lycopersici and Alternaria solani and tomato plant growth due to Plant Growth-Promoting Rhizobacteria. Intl J Veg Sci 23 (4): 294-303. DOI: 10.1080/19315260.2016.1271850.
Pazarlar S, Madriz-Ordeñana K, Thordal-Christensen H. 2022. Bacillus cereus EC9 protects tomato against fusarium wilt through JA/ET-activated immunity. Frontiers Plant Sci 13: 1090947. DOI: 10.3389/fpls.2022.1090947.
Pengproh R, Thanyasiriwat T, Sangdee K, Saengprajak J, Kawicha P, Sangdee A. 2023. Evaluation and genome mining of Bacillus stercoris isolate B. PNR1 as potential agent for fusarium wilt control and growth promotion of tomato. Plant Pathol J 39 (5): 430-448. DOI: 10.5423/PPJ.OA.01.2023.0018.
Prihatiningsih N, Arwiyanto T, Hadisutrisno B, Widada J. 2015. Bacillus subtilis B315 antibiosis mechanism for controlling potato bacterial wilt disease. Jurnal Hama dan Penyakit Tumbuhan Tropika 15 (1): 64-71. DOI: 10.23960/j.hptt.11564-71. [Indonesian]
Rafanomezantsoa P, Gharbi S, Karkachi N, Kihal M. 2022. Antifungal activity of Bacillus spp. against Fusarium oxysporum f. sp. lycopersici and Ascochyta sp.. J Plant Protect Res 62 (3): 202. DOI: 10.24425/jppr.2022.142131.
Rahman M, Alauddin M, Mohsin GM, Alam MA, Rahman MK. 2024. Combination of composted poultry manure and inorganic fertilizers enhance growth and yield of tomato (Lycopersicon esculentum Mill.) in a rooftop growing system. J Phythol 16: 28-35. DOI: 10.25081/jp.2024.v16.8717.
Reiner K. 2010. Catalase Test Protocol. American Society for Microbiology. https://asm.org/getattachment/72a871fc-ba92-4128-a194-6f1bab5c3ab7/ Catalase
Retnowati Y, Kandowangko NY, Katili AS, Pembengo W. 2024. Diversity of actinomycetes on plant rhizosphere of karst ecosystem of Gorontalo, Indonesia. Biodiversitas 25: 907-915. DOI: 10.13057/biodiv/d250301.
Saeed SWZ, Naseer I, Zahir ZA, Hilger T, Shahid S, Iqbal Z, Ahmad M. 2023. Bacillus strains with catalase enzyme improve the physiology and growth of rice (Oryza sativa L.). Stresses 3 (4): 736-748. DOI: DOI: 10.3390/stresses3040050.
Saputri A, Soesanto L, Mugiastuti E, Umayah A, Sarjito A. 2020. Exploration and virulence testing of Bacillus sp. corn endophytes against corn sheath rot disease. Jurnal Ilmu-Ilmu Pertanian Indonesia 22 (2): 70-78. DOI: 10.31186/jipi.22.2.70-78. [Indonesian]
Sarwar S, Khaliq A, Yousra M, Sultan T, Ahmad N, Khan MZ. 2020. Screening of siderophore-producing PGPRs isolated from groundnut (Arachis hypogaea L.) rhizosphere and their influence on iron release in soil. Commun Soil Sci Plant Analysis 51 (12): 1680-1692. DOI: 10.1080/00103624.2020.1791159.
Sembiring H, Subekti NA, Nugraha D, Priatmojo B, Stuart AM. 2020. Yield gap management under seawater intrusion areas of Indonesia to improve rice productivity and resilience to climate change. Agriculture (Switzerland) 10: 1. DOI: 10.3390/agriculture10010001.
Singh VK, Singh HB, Upadhyay RS. 2017. Role of fusaric acid in the development of ‘Fusarium wilt’symptoms in tomato: Physiological, biochemical and proteomic perspectives. Plant Physiol Biochem 118: 320-332. DOI: 10.1016/j.plaphy.2017.06.028.
Sivasakthi S, Usharani G, Saranraj P. 2014. Biocontrol potentiality of plant growth promoting bacteria (PGPR)- Pseudomonas fluorescens and Bacillus subtilis: A review. Afr J Agric Sci 9 (16): 1265-1277. DOI: 10.5897/AJAR2013.7914.
Skendži? S, Zovko M, Živkovi? IP, Leši? V, Lemi? D. 2021. The impact of climate change on agricultural insect pests. Insects 12 (5): 440. DOI: 10.3390/insects12050440.
Timofeeva AM, Galyamova MR, Sedykh SE. 2023. Plant growth-promoting soil bacteria: Nitrogen fixation, phosphate solubilization, siderophore production, and other biological activities. Plants 12 (24): 4074. DOI: 10.3390/plants12244074.
Tripathi N, Sapra A. 2021. Gram Staining. Statpearls, Treasure Island, FL, USA. https://europepmc.org/article/NBK/nbk562156.
Ulucay O, Gormez A, Ozic, C. 2022. Identification, characterization and hydrolase producing performance of thermophilic bacteria: Geothermal hot springs in the Eastern and Southeastern Anatolia Regions of Turkey. Antonie van Leeuwenhoek 115: 253-270. DOI: 10.1007/s10482-021-01678-5.
Velásquez AC, Castroverde CDM, He SY. 2018. Plant-pathogen warfare under changing climate conditions. Curr Biol 28 (10): R619-R634. DOI: 10.1016/j.cub.2018.03.054.
Wakelin SA, Gomez-Gallego M, Jones E, Smaill S, Lear G, Lambie S. 2018. Climate change induced drought impacts on plant diseases in New Zealand. Aust Plant Pathol 47: 101-114. DOI: 10.1007/s13313-018-0541-4.
Wang X, Wang C, Ji C, Li Q, Zhang J, Song X, Kang SJ, Liu Z, Du J, Liu X. 2018. Isolation and characterization of antagonistic bacteria with the potential for biocontrol of soil?borne wheat diseases. J Appl Microbiol 125 (6): 1868-1880. DOI: 10.1111/jam.14099.
Wani PA, Khan MS. 2013. Isolation of multiple metal and antibiotic resistant mesorhizobium species and their plant growth promoting activity. Res J Microbiol 8 (1): 25. DOI: 10.3923/jm.2013.25.35.
Zhu J, Tan T, Shen A, Yang X, Yu Y, Gao C, Li Z, Cheng Y, Chen J, Guo L, Sun X, Yan Z, Li J, Zeng L. 2020. Biocontrol potential of Bacillus subtilis IBFCBF-4 against fusarium wilt of watermelon. J Plant Pathol 102: 433-441. DOI: 10.1007/s42161-019-00457-6.

Most read articles by the same author(s)

1 2 > >>