Leaf productivity of Halophila major: A significant morphometric correlation with biomass, except leaf area

##plugins.themes.bootstrap3.article.main##

Robba Fahrisy Darus
Dietriech Geoffrey Bengen
Neviaty Putri Zamani
Meutia Samira Ismet

Abstract

Halophila major is a newly rediscovered seagrass species in Indonesia that was described based on morphometric traits and not involved by leaf productivity. Leaf dry weight, biomass, and carbon concentration are the leaf productivity parameters that need time to examine, especially for rapid assessment. Based on scientific publications, allometric equations could be used to assess the leaf productivity quickly. This study aims to determine leaf dry weight, leaf biomass, and carbon concentration using allometric methods and analyses the relationship between morphometrics and leaf productivity on H. major. Morphometric characters (leaf length-LL, leaf width-LW, and leaf area-LA) were used to see the correlation with leaf dry weight (LDW), specific leaf area (SLA), biomass (BIO), and concentration carbon (CS). These results indicate that the biomass of H. major is greater than H. ovalis. LL and LW are strongly correlated with LDW compared to LA. Biomass is also greatly influenced by LL and LDW. Furthermore, these results show that allometric equations can be used quickly to assess the biomass of small seagrasses. Leaf productivity variation is affected by the leaf size. Thus, leaf productivity can describe a new seagrass species in the future. However, more data is needed for knowing and interpreting a character in new seagrass species. Hence, this study must be replicated for other seagrass species.

##plugins.themes.bootstrap3.article.details##

References
Ambo-Rappe R. 2020. Seagrass meadows for fisheries in Indonesia: a preliminary study. IOP Conf Earth Env Sci 564(1):1-13. DOI: 10.1088/1755-1315/564/1/012017.
Bartelink HH. 1997. Allometric relationship for biomass and leaf area of beech (Fagus sylvatica L). Ann For Sci 54(1):39-50. DOI: 10.1051/forest:19970104.
Chen W, Li J, Zhang Y, Zhou F, Koehler F, Leblanc S, Fraser R, Olthof I, Zhang Y, Wang J. 2009. Relating biomass and leaf area index to non-destructive measurements in order to monitor changes in Arctic Vegetation. Arctic 62(3):281-294.
Choon NK. 2023. Influence of water depth on the morphology structure of seagrass from the Southern of Peninsular Malaysia. J Trop Biol Conserv 20:257-274. DOI: 10.51200/jtbc.v20i.4658.
Costa V, Serôdio J, Lillebø AI, Sous AI. 2021. Use of hyperspectral reflectance to non-destructively estimate seagrass Zostera noltei biomass. Ecol Indic 121(107018):1-12. DOI: 10.1016/j.ecolind.2020.107018.
Dandy JE. 2005. Flora Europaea. In: Tutin, T. G. (Ed.), Alismataceae to Orchidaceae, vol. 5. Cambridge, University Press, 7th printing, Cambridge, United Kingdom, p. 11.
de Almeida LR, Avila-Mosqueda SV, Silva R, Mendoza E, van Tussenbroek BI. 2022. Mapping the structure of mixed seagrass meadows in the Mexican Caribbean. Front Mar Sci 9(1063007):1-15. DOI: 10.3389/fmars.2022.1063007.
Deguette A, Barrote I, Silva J. 2022. Physiological and morphological effects of a marine heatwave on the seagrass Cymodocea nodosa. Sci Rep 12(1):1-13. DOI: 10.1038/s41598-022-12102-x.
Dingkuhn M, Tivet F, Siband P, Asch F, Audebert A, Sow A. 2001. Varietal differences in specific leaf area: a common physiological determinant of tillering ability and early growth vigor?. In: Peng S, Hardy B (eds). Rice research for food security and poverty alleviation. Proceedings of the International Rice Research Conference, Los Baños, Philippines, 31 March-3 April, 2000.
Duarte CM. 1991. Allometric scaling of seagrass form and productivity. Mar Ecol Prog Ser 77(2): 289-300. DOI: 10.3354/meps077289.
Duarte CM, Chiscano CL. 1999. Seagrass biomass and production: a reassessment. Aquat Bot 65(1-4): 159-174. DOI: 10.1016/S0304-3770(99)00038-8.
Echavarría-Heras H, Leal-Ramírez C, Villa-Diharce E, Montesinos-López A. 2019. Examination of the effects of curvature in geometrical space on accuracy of scaling derived projections of plant biomass units: Applications to the assessment of average leaf biomass in eelgrass shoots. Biomed Res Int 2019(3613679):1-23. DOI: 10.1155/2019/3613679.
Echavarría-Heras H, Leal-Ramírez C, Villa-Diharce E, Cazarez-Castro N. 2018. On the suitability of an allometric proxy for nondestructive estimation of average leaf dry weight in eelgrass shoots I: sensitivity analysis and examination of the influences of data quality, analysis method, and sample size on precision. Theor Biol Med Model 15(4):1-20. DOI: 10.1186/s12976-018-0076-y.
Echavarría-Heras H, Leal- Ramírez C, Villa-Diharce E, Cazarez-Castro NR. 2015. The effect of parameter variability in the allometric projection of leaf growth rates for eelgrass (Zostera marina L.) II: The importance of data quality control procedures in bias reduction. Theor Biol Med Model 12(30):1-21. DOI: 10.1186/s12976-015-0025-y.
Echavarría-Heras H, Lee KS, Solana-Arellano E, Franco-Vizcaíno E. 2011. Formal analysis and evaluation of allometric methods for estimating above-ground biomass of eelgrass. Ann Appl Biol 159(3):503-515. DOI: 10.1111/j.1744-7348.2011.00511.x.
Echavarría-Heras H, Solana-Arellano E, Franco-Vizcaíno E. 2010. An allometric method for the projection of eelgrass leaf biomass production rates. Math Biosci 223(1):58-65. DOI: 10.1016/j.mbs.2009.10.008.
Echavarría-Heras H, Solana-Arellano E, Leal-Ramírez C, Castillo O. 2013a. Using allometric procedures to substantiate the plastochrone method for eelgrass leaf growth assessments. Theor Biol Med Model 10(34):1-15. DOI: 10.1186/1742-4682-10-34.
Echavarría-Heras H, Solana-Arellano E, Leal-Ramírez C, Vizcaino EF. 2013b. An allometric method for measuring leaf growth in eelgrass, Zostera marina, using leaf length data. Bot Mar 56(3):275-286. DOI: 10.1515/bot-2012-0215.
Echavarría-Heras H, Solana-Arellano E, Lee KS, Hosokawa S, Franco-Vizcaíno E. 2012. An evaluation of leaf biomass: length ratio as a tool for nondestructive assessment in eelgrass (Zostera marina L.). Sci World J 1:1-8. DOI: 10.1100/2012/543730.
Echavarría-Heras H, Solana-Arellano E, Franco-Vizcaíno EJB. 2006. The role of increased sea surface temperature on eelgrass leaf dynamics: onset of El Niño as a proxy for global climate change in San Quintín Bay, Baja California. Bull South Calif Acad Sci 105(3):113-127. DOI: 10.3160/0038-3872(2006)105[113:TROISS]2.0.CO;2.
Forrester DI, Tachauer IHH, Annighoefer P, Barbeito I, Pretzsch H, Ruiz-Peinado R, Stark H, Vacchiano G, Zlatanov T, Chakraborty T, Saha S, Sileshi GW. 2017. Generalized biomass and leaf area allometric equations for European tree species incorporating stand structure, tree age and climate. Forest Ecol Manag 396:160-175. DOI: 10.1016/j.foreco.2017.04.011.
Gaubert-Boussarie J, Altieri AH, Duffy JE, Campbell JE. 2021. Seagrass structural and elemental indicators reveal high nutrient availability within a tropical lagoon in Panama. PeerJ 9:e11308. DOI: 10.7717/peerj.11308
Gholz HL, Fitz FK, Waring RH. 1976. Leaf area differences associated with old-growth forest communities in the western Oregon Cascades. Can J For Res 6(1):49-57. DOI: 10.1139/x76-007.
Ha NT, Manley-Harris M, Pham TD, Hawes I. 2021. The use of radar and optical satellite imagery combined with advanced machine learning and metaheuristic optimization techniques to detect and quantify above-ground biomass of intertidal seagrass in a New Zealand estuary. Int J Remote Sensing 42(12):4712-4738. DOI: 10.1080/01431161.2021.1899335.
Hamburg SP, Homann PS. 1986. Utilization of growth parameters of eelgrass, Zostera marina, for productivity estimation under laboratory and in situ conditions. Mar Biol 93(2):299-303. DOI: 10.1007/BF00508267.
Hammer O, Harper DAT, Ryan PD. 2001. PAST: Paleontological Statistics software package for education and data analysis. Palaentol Eclectron 4(1):1-9.
Hartoko A, Sembiring YT, Latifah N. 2021. Seagrass cholorophyll-a, biomass and carbon algorithms based on the field and sentinel-2A satellite data at Karimunjawa Island, Indonesia. Sci Technology Indonesia 6(3):121-130. DOI: 10.26554/sti.2021.6.3.121-130.
Hill VJ, Zimmerman RC, Bissett P, Kohler D, Schaeffer B, Coffer M, Li J, Islam KA. 2023. Impact of atmospheric correction on classi?cation and quanti?cation of seagrass density from worldview-2 imagery. Remote Sens 15(4715):1-25. DOI: 10.3390/rs15194715.
Horinouchi M, Tongnunui P, Furumitsu K, Kon K, Nakamura Y, Kanou K, Yamaguchi A, Seto K, Okamoto K, Sano M. 2016. Effects of habitat change from a bare sand/mud area to a short seagrass Halophila ovalis bed on fish assemblage structure: a case study in an intertidal bay in Trang, southern Thailand. Ichthyol Res 63(3):391-404. DOI: 10.1007/s10228-016-0510-2.
Ito MA, Lin HJ, O’Connor MI, Nakaoka M. 2021. Large-scale comparison of biomass and reproductive phenology among native and non-native populations of the seagrass Zostera japonica. Mar Ecol Prog Ser 675:1-21. DOI: 10.3354/meps13884.
Jiang Z, Zhao C, Yu S, Liu S, Cui L, Wu Y, Fang Y, Huang X. 2019. Contrasting root length, nutrient content, and carbon sequestration of seagrass growing in offshore carbonate and onshore terrigenous sediments in the South China Sea. Sci Total Environ 662:151-159. DOI: 10.1016/j.scitotenv.2019.01.175.
Kaewsrikhaw R, Prathep A. 2014. The effect of habitats, densities and seasons on morphology, anatomy and pigment content of the seagrass Halophila ovalis (R.Br.) Hook.f. at Haad Chao Mai National Park, Southern Thailand. Aquat Bot 116:69-75. DOI: 10.1016/j.aquabot.2014.01.009.
Kaewsrikhaw R, Ritchie RJ, Prathep A. 2016. Variations of tidal exposures and seasons on growth, morphology, anatomy and physiology of the seagrass Halophila ovalis (R.Br.) Hook. f. in a seagrass bed in Trang Province, Southern Thailand. Aquat Bot 130:11-20. DOI: 10.1016/j.aquabot.2015.12.006.
Kuo J. 2020. Taxonomy of the genus Halophila Thouars (Hydocharitaceae): A review. Plants 9(12):1-25. DOI: 10.3390/plants9121732.
Kuo J. 2007. New monoecious seagrass of Halophila sulawesii (Hydrocharitaceae) from Indonesia. Aquat Bot 87(2):171-175. DOI: 10.1016/j.aquabot.2007.04.006.
Kuo J, Kanamoto Z, Iizumi H, Mukai H. 2006. Seagrasses of the genus Halophila Thouars (Hydrocharitaceae) from Japan. Acta Phytotaxon Geobot 57(2):129-154. DOI: 10.18942/apg.KJ00004622858.
Kurniawan F, Imran Z, Darus RF, Anggraeni F, Damar A, Sunuddin A, Kamal MM, Pratiwi NTM, Ayu IP, Iswantari A. 2020. Rediscovering Halophila major (Zollinger) Miquel (1855) in Indonesia. Aquat Bot 161(103171):1-4. DOI: 10.1016/j.aquabot.2019.103171.
Lapointe BE, Herren LW, Brewton RA, Alderman PK. 2020. Nutrient over-enrichment and light limitation of seagrass communities in the Indian River Lagoon, an urbanized subtropical estuary. Sci Total Environ 699(134068):2-15. DOI: 10.1016/j.scitotenv.2019.134068.
Manousakas N, Salauddin M, Pearson J, Denissenko P, Williams H, Abolfathi S. 2022. Effects of seagrass vegetation on wave runup reduction – A laboratory study. IOP Conf Earth Environ Sci 1072(012004):1-7. DOI: 10.1088/1755-1315/1072/1/012004.
Marimba AA, Ambo-Rappe R., Nafie YAL, Unsworth RKF. 2019. “Samba” fish catching operations in the seagrass meadows of Selayar Island, Indonesia. IOP Conf Earth Environ Sci, 253(012027):1-6. DOI: 10.1088/1755-1315/253/1/012027.
McKenzie LJ, Yoshida RL, Aini JW, Andréfouet S, Colin PL, Cullen-Unsworth LC, Hughes AT, Payri CE, Rota M, Shaw C, Skelton PA, Tsuda RT, Vuki VC, Unsworth RKF. 2021a. Seagrass ecosystems of the Pacific Island Countries and Territories: A global bright spot. Mar Pollut Bull 167(112308):1-24. DOI: 10.1016/j.marpolbul.2021.112308.
McKenzie LJ, Yoshida RL, Aini JW, Andréfouet S, Colin PL, Cullen-Unsworth LC, Hughes AT, Payri CE, Rota M, Shaw C, Tsuda RT, Vuki VC, Unsworth RKF. 2021b. Seagrass ecosystem contributions to people's quality of life in the Pacific Island Countries and Territories. Mar Pollut Bull 167(112307):1-16. DOI: 10.1016/j.marpolbul.2021.112307.
Milchakova N. 2020. Ecosystem services of seagrasses. In: Grigore, MN (eds). Handbook of halophytes. Springer, Cham. DOI: 10.1007/978-3-030-17854-3_124-1.
Misbari S, Hashim M. 2015. On models for estimation of submerged seagrass aboveground biomass in shallow coastal water. Paper presented at the ACRS 2015-36th Asian Conference on Remote Sensing: Fostering Resilient Growth in Asia, Proceedings. https://www.proceedings.com/28931.html.
Muna LR., Brodie G, Singh A, Hills J, Wandres M, Damlamian H. 2023. Understanding ecosystem services for climate change resilience in coastal environments: A case study of low-canopy sub-tidal seagrass beds in Fiji. Front Mar Sci 10(1184568):1-11. DOI: 10.3389/fmars.2023.1184568.
Najdek M, Korlevi? M, Paliaga P, Markovski M, Ivan?i? I, Iveša L, Felja I, Herndl GJ. 2020. Dynamics of environmental conditions during a decline of a Cymodocea nodosa meadow. Biogeosciences 17(12):3299-3315. DOI: 10.5194/bg-17-3299-2020.
Nguyen VX, Holzmeyer L, Papenbrock J. 2013. New record of the seagrass species Halophila major (Zoll.) Miquel in Vietnam: evidence from leaf morphology and ITS analysis. Bot Mar 56(4):313-321. DOI: 10.1515/bot-2012-0188.
Nguyen XV, Nguyen-Nhat NT, Nguyen XT, Dao VH, Liao LM, Papenbrock J. 2021. Analysis of rDNA reveals a high genetic diversity of Halophila major in the Wallacea region. PLoS One 16(10):1-16. DOI: 10.1371/journal.pone.0258956.
Rahmawati S, Hernawan UE, Rustam A. 2019. The seagrass carbon content of 0.336 of dry weight can be applied in Indonesian seagrasses. Paper presented at the International Conference on Biology and Applied Science (Icobas). AIP Conference Proceedings 2120(030012):1-7. DOI: 10.1063/1.5115616.
Solana-Arellano E, Echavarría-Heras H. 2003. Improved leaf area index based biomass estimations for Zostera marina L. Math Med Biol 20(4):367-375. DOI: 10.1093/imammb/20.4.367.
Solana-Arellano E, Echavarría-Heras H, Díaz-Castañeda V, Flores-Uzeta O. 2012. Shoot Biomass assessments of the marine phanerogam Zostera marina for two methods of data gathering. Am J Plant Sci 03(11):1541-1545. DOI: 10.4236/ajps.2012.311186.
Solana-Arellano E, Echavarría-Heras H, Leal-Ramírez C. 2009. Characterisation of environmental forcing on Zostera marina L. plastochrone interval dynamics in the Punta Banda Estuary, BC Mexico: an empirical modelling approach. Sci Mar 73(1):95-103. DOI: 10.3989/scimar.2009.73n1095.
Solana-Arellano ME, Echavarría-Heras H, Ibarra-Obando SJE. 1997. Leaf-size Dynamics for Zostera marina L. in San Quintin Bay, México: a Theoretical Study. Estuar Coast Shelf S 44(3):351-359. DOI: 10.1006/ecss.1996.0115.
Surinati D, Wisha UJ, Bayhaqi A, Prayitno HB, Rahmawati S. 2023. Trapped sediment in seagrass ecosystem: Bintan island. J Sustain Sci Manage 18(8):125-141. DOI: 10.46754/jssm.2023.08.009.
Syukur A, Idrus AAI, Zulkifli L. 2021. Seagrass-associated fish species’ richness: evidence to support conservation along the south coast of Lombok Island, Indonesia. Biodiversitas 22(2):988-998. DOI: 10.13057/biodiv/d220255.
Tuntiprapas P, Shimada S, Pongparadon S, Prathep A. 2015. Is Halophila major (Zoll.) Miquel a big H. ovalis (R. Brown) J.D. Hooker? An evaluation based on age, morphology, and ITS sequence. ScienceAsia 41(2):79-86. DOI: 10.2306/scienceasia1513-1874.2015.41.079.
Veettil BK, Ward RD, Lima MDAC, Stankovic M, Hoai PN, Quang NX. 2020. Opportunities for seagrass research derived from remote sensing: A review of current methods. Ecol Indic 117(106560):1-20. DOI: 10.1016/j.ecolind.2020.106560.
Vieira VMNCS, Lopes IE, Creed JC. 2019. A model for the biomass–density dynamics of seagrasses developed and calibrated on global data. BMC Ecol 19(4):1-11. DOI: 10.1186/s12898-019-0221-4.
Vile D, Garnier E, Shipley B, Laurent G, Navas ML, Roumet C, Lavorel S, Díaz S, Hodgson JG, Lloret F, Midgley GF, Poorter H, Rutherford MC, Wilson PJ, Wright IJ. 2005. Specific leaf area and dry matter content estimate thickness in laminar leaves. Annal Bot 96(6):1129-1136. DOI: 10.1093/aob/mci264.
Weraduwage SM, Chen J, Anozie FC, Morales A, Weise SE, Sharkey TD. 2015. The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana. Front Plant Sci 6(167):1-21. DOI: 10.3389/fpls.2015.00167.
Wicaksono P, Danoedoro P, Hartono, Nehren U, Maishella A, Hafizt M, Arjasakusuma S, Harahap SD. 2021. Analysis of field seagrass percent cover and aboveground carbon stock data for non-destructive aboveground seagrass carbon stock mapping using worldview-2 image. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 46: 321-327. DOI: 10.5194/isprs-archives-XLVI-4-W6-2021-321-2021.
Wong MC, Griffiths G, Vercaemer B. 2019. Seasonal response and recovery of eelgrass (Zostera marina) to short-term reductions in light availability. Estuar Coast 43(1):120-134. DOI: 10.1007/s12237-019-00664-5.
Wong MC, Dowd M. 2023. The role of short-term temperature variability and light in shaping the phenology and characteristics of seagrass beds. Ecosphere 14(e4698):1-21. DOI: 10.1002/ecs2.4698.
Yulin L, Johnson DA, Yongzhong S, Jianyuan C, Tonghui Z. 2005. Specific leaf area and leaf dry matter content of plants growing in sand dunes. Bot Bull Acad Sin 46:127-134.

Most read articles by the same author(s)