Identification and production of indole-3-acetic acid by bacteria isolated from eco-enzymes

##plugins.themes.bootstrap3.article.main##

V. IRENE MEITINIARTI
SRI KASMIYATI
https://orcid.org/0000-0002-6636-8743
EZRA
RULLY ADI NUGROHO
https://orcid.org/0000-0001-8195-2801
AGNA S. KRAVE

Abstract

Abstract. Meitiniarti VI, Kasmiyati S, Nugroho RA, Krave AS. 2025. Identification and production of indole-3-acetic acid by bacteria isolated from eco-enzymes. Biodiversitas 26: 111-117. Phytohormone-producing microorganisms are an essential component of biofertilizers. One example of a phytohormone is Indole Acetic Acid (IAA). IAA-producing microorganisms can be originated from various habitats. In this study, IAA-producing bacteria will be isolated from eco-enzyme, a liquid-fermented organic material rich in benefits and contains numerous microorganisms and IAA. The research involves processes of isolation, detection of cell and IAA production, and molecular identification. Through the processes of isolation and purification, 14 bacterial isolates were obtained. After testing their ability to produce IAA using a medium containing L-tryptophan and Salkowski's reagent, only 11 isolates were found to produce IAA. The DNA of these 11 isolates was isolated, amplified, sequenced, and identified through molecular analysis. The nucleotide sequences of these 11 bacterial isolates have been registered in the gene bank and assigned accession numbers PQ095569 to PQ095579. Based on alignment and phylogenetic tree analysis, the 11 isolates were grouped into three categories: the Bacillus group, consisting of Bacillus altitudinis, Bacillus subtilis, Bacillus licheniformis, Priestia megaterium, and Paenibacillus sp.; lactic acid bacteria, including Lacticaseibacillus paracasei and Lactiplantibacillus plantarum; and vibrio-shaped bacteria, including Vibrio sp. and Vibrio diazotrophicus. The Bacillus group (including Paenibacillus megaterium) could produce high levels of IAA. However, among the members of this group, P. megaterium exhibited the highest cell production capability and IAA production, with values of 2982.208 mg·L?¹ and 35.49 mg·L?¹, respectively. This high growth ability and IAA production make P. megaterium a promising candidate as an inoculum for use as a PGPR (Plant Growth-Promoting Rhizobacterium).

##plugins.themes.bootstrap3.article.details##

References
Anugrah FA, Fanany R, Putra SA, Masita R, Safitri DY. 2021. Indole Acetic Acid (IAA) hormone production by endophytic bacteria isolate from Cinchona plant (Cinchona ledgerina Moens.) root. AIP Conf Proc 2353 (1): 030082. DOI: 10.1063/5.0052923.
Aulia IAN, Handayani D. 2022. Keanekaragaman cendawan dari cairan ecoenzyme dengan sumber bahan organik berbagai jenis kulit jeruk. Jurnal Serambi Biologi 7 (1): 114-119. [Indonesian]
Barman I, Hazarika S, Gogol J, Talukdar N. 2022. A systematic review on enzyme extraction from organic wastes and its application. J Biochem Technol 13 (3): 32-37. DOI: 10.51847/JVfUPnKi16.
Budiharjo A, Jeong H, Wulandari D, Lee S, Ryu CM. 2017. Complete genome sequence of Bacillus altitudinis P-10, a potential bioprotectant against Xanthomonas oryzae pv. oryzae, isolated from rice rhizosphere in Java, Indonesia. Genome Announc 5 (48): e01388-17. DOI: 10.1128/genomeA.01388-17.
Chauhan H, Bagyaraj DJ, Selvakumar G, Sundaram SP. 2015. Review: Novel plant growth promoting rhizobacteria-Prospects and potential. Appl Soil Ecol 95: 38-53. DOI: 10.1016/j.apsoil.2015.05.011.
de O. Nunes PS, de Medeiros FHV, de Oliveira TS, de Almeida Zago JR, Bettiol W. 2023. Bacillus subtilis and Bacillus licheniformis promote tomato growth. Braz J Microbiol 54: 397-406. DOI: 10.1007/s42770-022-00874-3.
Elfira Y, Kusmiyati F, Budiharjo A. 2020. The effect of Bacillus altitudinis P-10 combination treatments on the plant growth and seed quality of corn (Zea mays L.). Bioma 22 (2): 180-187. DOI: 10.14710/bioma.22.2.180-187.
Elsoud MMA, Hasan SF, Elhateir MM. 2023. Optimization of indole-3-acetic acid production by Bacillus velezensis isolated from Pyrus rhizosphere and its effect on plant growth. Biocat Agric Biotechnol 50: 102714. DOI: 10.1016/j.bcab.2023.102714.
Farma SA, Luzik ND, Sakina S, Putri ILE, Advinda L, Anhar A. 2023. The potential of local orange peel-derived eco-enzymes in producing indole acetic acid. Acta Biochimica Indonesiana 6 (2): 135. DOI: 10.32889/actabioina.135.
Fernández-Martínez LT, Javelle A, Hoskisson PA. 2024. Microbial Primer: Bacterial growth kinetics. Microbiology 170 (2): 001428. DOI: 10.1099/mic.0.001428.
Giang NV, Hien PH, Diep VTN, Huyen PK, Pylnev VV. 2024. Isolation and characterization of indole acetic acid-producing bacteria isolated from rhizospheric soil of paddy rice. E3S Web of Conferences 494: 04030. DOI: 10.1051/e3sconf/202449404030 AEES2023.
Gonzalez JM, Aranda B. 2023. Microbial growth under limiting conditions - future perspectives. Microorganisms 11 (7): 1641. DOI: 10.3390/microorganisms11071641.
Grady EN, MacDonald J, Liu L, Richman A, Yuan Z-C. 2016. Current knowledge and perspectives of Paenibacillus: A review. Microb Cell Fact 15: 203. DOI: 10.1186/s12934-016-0603-7.
Gu S, Xu D, Zhou F, Chen C, Liu C, Tian M, Jiang A. 2021. The garbage enzyme with Chinese Hoenylocust fruits showed better properties and application than when using the garbage enzyme alone. Foods 10 (11): 2656. DOI: 10.3390/foods10112656.
Gupta RS, Patel S, Saini N. Chen S. 2020. Robust demarcation of 17 distinct Bacillus species clades, proposed as novel Bacillaceae genera, by phylogenomics and comparative genomic analyses: Description of Robertmurraya kyonggiensis sp. nov. and proposal for an emended genus Bacillus limiting it only to the members of the subtilis and cereus clades of species. Intl J Syst Evol Microbiol 70 (11): 5753-5798. DOI: 10.1099/ijsem.0.004475.
Gutierrez CK, Matsui GY, Lincoln DE, Lovell CR. 2009. Production of the phytohormone Indole-3-Acetic Acid by estuarine species of the genus Vibrio. Appl Environ Microbiol 75 (8): 2253-2258. DOI: 10.1128/AEM.02072-08.
Hashem A, Tabassum B, Fathi Abd Allah E. 2019. Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi J Biol Sci 26 (6): 1291-1297. DOI: 10.1016/j.sjbs.2019.05.004.
Hemalatha M, Visantini P. 2020. Potential use of eco-enzyme for the treatment of metal based effluent. IOP Conf Ser Mater Sci Eng 716 (1): 012016. DOI: 10.1088/1757-899X/716/1/012016.
Ibrahim A, Fridayanti A, Delvia F. 2017. Isolasi dan identifikasi bakteri asam laktat (BAL) dari buah mangga (Mangifera indica L.). Jurnal Ilmiah Manuntung 1 (2): 159-163. DOI: 10.51352/jim.v1i2.29. [Indonesian]
Ismail AY, Nainggolan MF, Aminudin S, Siahaan RY, Dzulfannazhir F, Sofyan HN. 2024. Characterization of chemical composition of eco-enzyme derived from banana, orange, and pineapple pineapple peels. Braz J Biol 84: e286961. DOI: 10.1590/1519-6984.286961.
Kaberdin VR, Arana I. 2021. Recent insights into Escherichia coli and Vibrio spp. pathogenicity and responses to stress. Microorganisms 10 (1): 38. DOI: 10.3390/microorganisms10010038.
Kalsooma, Batoola A, Dina G, Dina SU, Jamila J, Hasana F, Khana S, Badshaha M, Shaha AA. 2021. Isolation and screening of chromium resistant bacteria from industrial waste for bioremediation purposes. Braz J Biol 83: e242536. DOI: 10.1590/1519-6984.242536.
Kerkar S, Raiker L, Tiwari A, Mayilraj S, Dastager S. 2012. Bio?lm-associated indole acetic acid producing bacteria and their impact in the proliferation of bio?lm mats in solar salterns. Biologia 67: 454-460. DOI: 10.2478/s11756-012-0032-y.
Khianngam S, Meetum P, Chiangmai PN, Tanasupawat S. 2023. Identification and optimisation of Indole-3-Acetic Acid production of endophytic bacteria and their effects on plant growth. Trop Life Sci Res 34 (1): 219-239. DOI: 10.21315/tlsr2023.34.1.12.
Kochar M, Vaishnavi A, Upadhyay A, Srivastava S. 2013. Bacterial biosynthesis of indole-3-acetic acid: Signal messenger service. In: Frans J. de Bruijn (eds). Molecular Microbial Ecology of The Rhizosphere. John Wiley & Sons, Ltd. New York. DOI: 10.1002/9781118297674.ch29.
Krause M, Kenny S, Stephenson J, Singleton A. 2023. Quantifying methane emissions from landfilled food waste. U.S. Environmental Protection Agency Office of Research and Development, EPA-600-R-23-064, United States.
Kumar MS, Reddy GC, Phogat M, Korav S. 2018a. Role of bio-fertilizers towards sustainable agricultural development: A review. J Pharmacogn Phytochem 7 (6): 1915-1921.
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018b. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 35 (6): 1547-1549. DOI: 10.1093/molbev/msy096.
Lee PY, Costumbrado J, Hsu CY, Kim YH. 2012. Agarose gel electrophoresis for the separation of DNA fragments. J Vis Exp 62: e3923. DOI: 10.3791/3923.
Li G, Young KD. 2013. Indole production by the tryptophanase TnaA in Escherichia coli is determined by the amount of exogenous tryptophan. Microbiol 159: 402-410. DOI: 10.1099/mic.0.064139-0.
Liu J, Zhang J, Zhu M, Wan H, Chen Z, Yang N, Duan J, Wei Z, Hu T, Liu F. 2022. Efects of plant growth promoting rhizobacteria (PGPR) strain Bacillus licheniformis with biochar amendment on potato growth and water use eiciency under reduced irrigation regime. Agronomy 12 (5): 1031. DOI: 10.3390/agronomy12051031.
Mohite B. 2013. Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizopheric soil and its effect on plant growth. J Soil Sci Plant Nutr 13 (3): 638-649. DOI: 10.4067/S0718-95162013005000051.
Novianti A, Muliarta IN. 2021. Eco-enzym based on household organic waste as multi-purpose liqiud. Agriwar J 1 (1): 12-17. DOI: 10.22225/ aj.1.1.2021.12-17.
Nugroho RA, Meitiniarti VI, Damayanti C. 2020. Antagonistic effect of two indigenous phosphate solubilizing bacteria, Burkholderia contaminans PSB3 and Acinetobacter baumannii PSB11 isolated from different crop soils. Microbiol Indones 4 (2): 45-51. DOI: 10.5454/mi.14.2.1.
Nunes AR, Flores-Félix JD, Sánchez-Juanes F, Gonçalves AC, Alves G, Silva LR. 2022. Evaluation of raw cheese as a novel source of biofertilizer with a high level of biosecurity for blueberry. Agronomy 12 (5): 1150. DOI: 10.3390/agronomy12051150.
Panetto LD, Doria J, Santos CHB, Frezarin ET, Sales LR, de Andrade LA, Rigobelo EC. 2023. Lactic bacteria with plant-growth promoting properties in potato. Microbiol Res 14 (1): 279-288. DOI: 10.3390/microbiolres14010022.
Putra SS, Rahayu T, Tyastuti EM. 2023. Isolation and characterization of Cambodian tree rhizospheric bacteria (Plumeria acuminata) at Pracimaloyo TPU as a producer of IAA. Bioeduscience 7 (1): 15-23. DOI: 10.22236/jbes/7111375.
Ramadhani SI, Prabaningtyas S, Witjoro A, Saptawati TR, Rodiansyah A. 2020. Quantitative assay of Indole Acetic Acid-producing bacteria isolated from several lakes in East Java, Indonesia. Biodiversitas 21 (11): 5448-5454. DOI: 10.13057/biodiv/d211153.
Rasit N, Chee Kuan O. 2018. Investigation on the influence of bio-catalytic enzyme produced from fruit and vegetable waste on palm oil mill effluent. IOP Conf Ser Earth Environ Sci 140 (1): 012015. DOI: 10.1088/1755-1315/140/1/012015.
Rusdianasari, Syakdani A, Zaman M, Sari FF, Nasyta NP, Amalia R. 2021. Production of disinfectant by utilizing eco-enzyme from fruit peels waste. Intl J Res Vocat Stud 1: 01-07. DOI: 10.5rochyani3893/ijrvocas.v1i3.53.
Saputro FA, Kurniawati H. 2024. The application of biofertilizer to realize sustainable agricultural program: A review. Proceed 3rd Intl Sem Sci Technol3: 133-142. DOI: 10.33830/isst.v3i1.2317.
Seenivasagan R, Babalola OO. 2021. Utilization of microbial consortia as biofertilizers and biopesticides for the production of feasible agricultural product. Biology 10: 1111. DOI: 10.3390/biology10111111.
Shi JW, Lu LX, Shi HM, Ye JR. 2022. Efects of plant growth promoting rhizobacteria on the growth and soil microbial community of Carya illinoinensis. Curr Microbiol 79 (11): 352. DOI: 10.1007/S00284-022-03027-9.
Shin HJ, Woo S, Jung GY, Park JM. 2023. Indole-3-acetic acid production from alginate by Vibrio sp. dhg: Physiology and characteristics. Biotechnol Bioprocess Eng 28 (4): 695-703. DOI: 10.1007/s12257-023-0056-x.
Spaepen S, Vanderleyden J, Remans R. 2007. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31 (4): 425-448. DOI: 10.1111/j.1574-6976.2007.00072.x.
Sukmawati, Dewi NK, Yunita M. 2021. The measurement of indole acetic acid from rhizosphere bacteria. Jurnal Pendidikan Biologi 6 (1): 108-115. DOI: 10.31932/jpbio.v6i1.872.
Tamura K, Stecher G, Kumar S. 2021. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol Biol Evol 38 (7): 3022-3027. DOI: 10.1093/molbev/msab120.
Vama L, Cherekar MN. 2020. Production, extraction and uses of eco enzyme using citrus fruit waste: Wealth from waste. Asian J Microbiol Biotechnol Environ Sci 22 (2): 346-351.
Verma D, Singh AN, Shukla AK. 2019. Use of garbage enzyme for treatment of waste water. Intl J Sci Res Rev 7 (7): 201-205.
Wang B, Gong L, Zhou Y, Tang L, Zeng Z, Wang Q, Zou P, Yu D, Li W. 2021. Probiotic Paenibacillus polymyxa 10 and Lactobacillus plantarum 16 enhance growth performance of broilers by improving the intestinal health. Anim Nutr 7 (3): 829-840. DOI: 10.1016/j.aninu.2021.03.008.
Wang L, Fan D, Chen W, Terentjev EM. 2015. Bacterial growth, detachment and cell size control on polyethylene terephthalate surfaces. Sci Rep 5 (1): 15159. DOI: 10.1038/srep15159.
Wisdawati E, Kuswinanti T, Rosmana A, Nasruddin A. 2020. Production of Indol-3-Acetic Acid (IAA) by fungal isolates of taro (Colocasia esculenta var. Antiquorum) rhizosphere. IOP Conf Ser Earth Environ Sci 486 (1): 012125. DOI: 10.1088/1755-1315/486/1/012125.
Zhang B-X, Li P-S, Wang Y-Y, Wang J-Y, Liu X-L, Wang X-Y, Hu X-M. 2021a. Characterization and synthesis of indole-3-acetic acid in plant growth promoting Enterobacter sp. RSC Adv 11 (50): 31601-31607. DOI: 10.1039/d1ra05659j.
Zhang D, Xu H, Gao J, Portieles R, Du L, Gao X, Nordelo CB, Borrás-Hidalgo O. 2021b. Endophytic Bacillus altitudinis strain uses different novelty molecular pathways to enhance plant growth. Front Microbiol 12: 692313. DOI: 10.3389/fmicb.2021.692313.