Benthic macroinvertebrate variability as an indicator of aquatic health in the Bone River, Gorontalo, Indonesia

##plugins.themes.bootstrap3.article.main##

MIFTAHUL KHAIR KADIM
https://orcid.org/0000-0002-7858-4849
NURALIM PASISINGI
ABDUL HAFIDZ OLII
ASUS MAIZAR SURYANTO HERTIKA
DIANA ARFIATI
ENDANG HERAWATI YULI
DEWI WAHYUNI K. BADERAN
SUCIYONO

Abstract

Abstract. Kadim MK, Pasisingi N, Olii AH, Hertika AMS, Arfiati D, Yuli EH, Baderan DW, Suciyono. 2025. Benthic macroinvertebrate variability as an indicator of aquatic health in the Bone River, Gorontalo, Indonesia. Biodiversitas 26: 1247-1256. The Bone River in Gorontalo, Indonesia is at risk of pollution due to anthropogenic activities in the surrounding area. Macroinvertebrates serve as bioindicators of pollution based on their community characteristics, including sedentary behavior, limited mobility, and sensitivity to water quality. This study aims to assess macroinvertebrate communities and evaluate the water quality of the Bone River watershed using the Biological Monitoring Working Party-Average Score Per Taxon (BMWP-ASPT) biotic index. Macroinvertebrate community variability was examined across 12 observation stations. Sampling was conducted during periods of low river discharge and in the absence of precipitation. Observation stations were purposefully selected based on prevailing ecological conditions (preferably riffle areas) and potential contamination sources from land use activities. Macroinvertebrate samples were collected between April and August during the 2021-2023 period and were identified at the family level. A total of 7,456 individuals, representing 43 genera, were recorded, with Platybaetis, Cheumatopsyche, Chironomus, and Coxelmis being widely distributed along the river. Moderate diversity, a high evenness index, and the dominance index suggest that no single macroinvertebrate species dominates the community. The BMWP-ASPT values ranged from 3.08 to 6.77, indicating varying levels of pollution in the Bone River. The findings demonstrate a progressive decline in river health, with worsening conditions observed downstream over the study period.

##plugins.themes.bootstrap3.article.details##

References
Abdullah AL, Akhtar M, Kamal AHM, Aftab-Uddin S, Islam MdS, Sharifuzzaman S. 2022. Assessment of benthic macroinvertebrates as potential bioindicators of anthropogenic disturbance in southeast Bangladesh coast. Mar Pollut Bull 184: 114217. DOI: 10.1016/j.marpolbul.2022.114217.
Armitage PD, Moss D, Wright, JF, Furse MT. 1983. The performance of a new biological water quality score system based on macroinvertebrates over a wide range of unpolluted running-water sites. Water Res 17 (3): 333-347. DOI: 10.1016/0043-1354(83)90188-4.
Arslan N, Salur A, Kalyoncu H, Mercan D, Bari?ik B, Odaba?i DA. 2016. The use of BMWP and ASPT indices for evaluation of water quality according to macroinvertebrates in Küçük Menderes River (Turkey). Biologia 71 (1): 49-57. DOI: 10.1515/biolog-2016-0005.
Baderan DWK, Aydalina RV, Hamidun MS. 2023. Morphological characteristics and biodiversity of mudskipper fish (Periophthalmus: Gobiidae) in mangrove ecosystem of coastal Bay of Tomini, Boalemo, Gorontalo Province, Indonesia. Biodiversitas 24 (1): 498-507. DOI: 10.13057/biodiv/d240158.
Barbieri MV, Peris A, Postigo C, Moya-Garcés A, Monllor-Alcaraz LS, Rambla-Alegre M, Eljarrat E, López de Alda M. 2020. Evaluation of the occurrence and fate of pesticides in a typical Mediterranean delta ecosystem (Ebro River Delta) and risk assessment for aquatic organisms. Environ Pollut 274: 115813. DOI: 10.1016/j.envpol.2020.115813.
Costa LL, Da costa MF, Zalmon IR. 2021. Macroinvertebrates as biomonitors of pollutants on natural sandy beaches: Overview and meta-analysis. Environ Pollut 275: 116629. DOI: 10.1016/j.envpol.2021.116629.
Croijmans L, De Jong JF, Prins HHT. 2021. Oxygen is a better predictor of macroinvertebrate richness than temperature: A systematic review. Environ Res Lett 16 (2): 023002. DOI: 10.1088/1748-9326/ab9b42.
Ecoton. 2013. Panduan Biotilik untuk Pemantauan Kesehatan Daerah Aliran Sungai. Ecoton, Surabaya. [Indonesian]
Galbrand C, Lemieux IG, Ghaly AE, Cote R, Verma M. 2007. Assessment of constructed wetland biological integrity using aquatic macroinvertebrates. J Biol Sci 7 (2): 52-65. DOI: 10.3844/ojbsci.2007.52.65.
Hartati R, Widianingsih W, Zainuri M, Wardiatno Y. 2024. Using macrobenthic community structure and biotic indices to assess the ecological status of Wulan Estuary, Demak District, Indonesia. Biodiversitas 25 (7): 3073-3087. DOI: 10.13057/biodiv/d250729.
Hertika AMS, Sudaryanti S, Musa M, Amron K, Putra RBDS, Alfarisi MA, Hidayat MR, Pertiwi M, Halimah MF. 2024. Benthic macroinvertebrates as bioindicators to detect the level of water pollution in the upstream segment of Brantas River Watershed in Malang, East Java, Indonesia Biodiversitas 25 (2): 632-643. DOI: 10.13057/biodiv/d250222.
Johnson SL, Ringler NH. 2014. The response of fish and macroinvertebrate assemblages to multiple stressors: A comparative analysis of aquatic communities in a perturbed watershed (Onondaga Lake, NY). Ecol Indic 41: 198-208. DOI: 10.1016/-J.ECOLIND.2014.02.006.
Kadim MK, Herawati EY, Arfiati D, Hertika AMS. 2022a. Macrozoobenthic diversity and heavy metals (Pb and Hg) accumulation in Bone River Gorontalo Indonesia. IOP Conf Ser Earth Environ Sci 1118 (1): 012052. DOI: 10.1088/1755-1315/1118/1/012052.
Kadim MK, Pasisingi N, Alinti ER, Panigoro C. 2022b. Biodiversity and community assemblages of freshwater and marine macrozoobenthos in Gorontalo Waters, Indonesia. Biodiversitas 23 (2): 637-647. DOI: 10.13057/biodiv/d230204.
Kadim MK, Pasisingi N. 2024. Kondisi habitat fisik dan keanekaragaman makroinvertebrata sebagai indikator pencemaran di sungai Bone Gorontalo. Jurnal Kesehatan Lingkungan Indonesia 23 (3): 301-310. DOI: 10.14710/jkli.23.3.301-310. [Indonesian]
Kadim MK, Risjani Y. 2022. Biomarker for monitoring heavy metal pollution in aquatic environment: An overview toward molecular perspectives. Emerg Contam 8: 195-205. DOI: 10.1016/j.emcon.2022.02.003.
Kaharu AN, Husnan R, Labdul BY 2022. Analisis debit banjir dan tinggi muka air sungai Bone terhadap elevasi dasar jembatan Molintogupo. Compos J 2 (2): 1-8. DOI: 10.37905/cj.v2i2.102. [Indonesian]
Kefford BJ, Botwe PK, Brooks AJ, Kunz S, Marchant R, Maxwell S, Metzeling L, Schäfer RB, Thompson RM. 2020. An integrated database of stream macroinvertebrate traits for Australia: Concept and application. Ecol Indic 114: 106280. DOI: 10.1016/j.ecolind.2020.-106280.
Keputusan Menteri Lingkungan Hidup Republik Indonesia Nomor 115 Tahun 2003. 2003. Keputusan Menteri Negara Lingkungan Hidup Nomor: 115 Tahun 2003 Tentang Pedoman Penentuan Status Mutu Air. Keputusan Menteri Lingkungan Hidup, Indonesia. [Indonesian]
Khan AS, Anavkar A, Ali A, Patel N, Alim H. 2021. A review on current status of riverine pollution in India. Biosci Biotechnol Res Asia 18 (1): 9-22. DOI: 10.13005/bbra/2893.
Koehnken L, Rintoul MS, Goichot M, Tickner D, Loftus A, Acreman MC. 2020. Impacts of riverine sand mining on freshwater ecosystems: A review of the scientific evidence and guidance for future research. River Res Appl 36 (3): 362-370. DOI: 10.1002/rra.3586.
Kumar V, Sharma A. Kumar R, Bhardwaj R, Thukral AK, Rodrigo-Comino J. 2020. Assessment of heavy-metal pollution in three different Indian water bodies by combination of multivariate analysis and water pollution indices. Hum Ecol Risk Assess 26 (1): 1-16. DOI: 10.1080/10807039.2018.1497946.
Larras F, Usseglio-Polatera P. 2020. Heterogeneity in macroinvertebrate sampling strategy introduces variability in community characterization and stream trait-based biomonitoring: Influence of sampling effort and habitat selection criteria. Ecol Indic 119: 1-12. DOI: 10.1016/j.ecolind.2020.106758.
Lei M, Li Y, Zhang W, Niu L, Wang L, Zhang H. 2020. Identifying ecological processes driving vertical and horizontal archaeal community assemblages in a contaminated urban river. Chemosphere 245: 125615. DOI: 10.1016/j.chemosphere.2019.125615.
Liao J, Cui X, Feng H, Yan S. 2022. Environmental background values and ecological risk assessment of heavy metals in watershed sediments: A comparison of assessment methods. Water 14 (1): 51. DOI: 10.3390/W14010051/S1.
Liu M, Li X, He Y, Li H. 2020. Aquatic toxicity of heavy metal-containing wastewater effluent treated using vertical flow constructed wetlands. Sci Tot Environ 727: 138616. DOI: 10.1016/j.scitotenv.2020.138616.
Long Y, Jiang J, Hu X, Hu J, Ren C, Zhou S. 2021. The response of microbial community structure and sediment properties to anthropogenic activities in Caohai wetland sediments. Ecotoxicol Environ Saf 211: 111936. DOI: 10.1016/j.ecoenv.2021.111936.
Lu X, Xu J, Xu Z, Liu X. 2021. Assessment of benthic ecological quality status using multi-biotic indices based on macrofaunal assemblages in a semi-enclosed bay. Front Mar Sci 8: 734710. DOI: 10.3389/fmars.2021.734710.
Magurran AE. 2021. Measuring biological diversity. Curr Biol 31 (19): 1174-1177. DOI: 10.1016/j.cub.2021.07.049.
Malvandi H, Moghanizade R, Abdoli A. 2020. The use of biological indices and diversity indices to evaluate water quality of rivers in Mashhad, Iran. Biologia 76: 959-971 DOI: 10.2478/s11756-020-00618-4.
Nayar R. 2020. Assessment of water quality index and monitoring of pollutants by physico-chemical analysis in water bodies: A review. Intl J Eng Res Technol 9 (1): 178-185. DOI: 10.17577/IJERTV9IS010046.
Ochieng H, Odong R, Okot-Okumu J. 2020. Comparison of temperate and tropical versions of Biological Monitoring Working Party (BMWP) index for assessing water quality of River Aturukuku in Eastern Uganda. Glob Ecol Conserv 23: e01183. DOI: 10.1016/j.gecco.2020.e01183.
Olii AH, Kadim MK, Pasisingi N. 2024. Assessment of lead and mercury contamination in Amphidromous Goby Larvae (Nike), water quality, and associated human health risks in Bone estuary, Indonesia. J Fish Environ 48 (2): 181-195. DOI: 10.34044-/j.jfe.2024.48.2.14.
Pebriani MA, Barus TA, Syafruddin I. 2022. Fish diversity and heavy metal accumulation of Pb, Cu and Zn after Mount Sinabung eruption in Benuken River, North Sumatra, Indonesia. Biodiversitas 23 (1): 187-194. DOI: 10.13057/biodiv/d230124.
Pritchard MJ, Martel JC. 2020. Information system ecology: An application of dataphoric ascendancy. Inform Syst 89: 101486. DOI: 10.1016/J.IS.2019.101486.
Rossaro B, Marziali L, Boggero A. 2022. Response of chironomids to key environmental factors: Perspective for biomonitoring. Insects 13 (10): 911. DOI: 10.3390/insects-13100911.
Roswell M, Dushoff J, Winfree R. 2021. A conceptual guide to measuring species diversity. Oikos 130 (3): 321-338. DOI: 10.1111/oik.07202.
Roveri V, Guimarães LL, Correia AT. 2020. Temporal and spatial variation of benthic macroinvertebrates on the shoreline of Guarujá, São Paulo, Brazil, under the influence of urban surface runoff. Reg Stud Mar Sci 36: 101289. DOI: 10.1016/j.rsma.2020.101289.
Sahami FM, Habibie SA. 2020. Exploration of adult phase of Nike fish to maintain its sustainability in Gorontalo Bay waters, Indonesia. AACL Bioflux 13 (4): 2829-2867.
Sanae R, Aimad A, Karim B, Jamaa H, Noureddine E, Mohamed F. 2021. The impact of physicochemical parameters and heavy metals on the biodiversity of benthic macrofauna in the Inaouene Wadi (Taza, North East Morocco). J Ecol Eng 22 (7): 231-241. DOI: 10.12911/22998993/139179.
Santos JM, Ferreira MT. 2020. Use of aquatic biota to detect ecological changes in freshwater: Current status and future directions. Water 12 (6): 1611. DOI: 10.3390/w12061611.
Singh N, Choudhary BK, Singh S, Kumar R. 2022. Monitoring and assessment of anthropogenic impacts on water quality by estimating the BMWP and ASPT indices for a headwater stream in Doon Valley, India. Sustain Water Resour Manag 8 (4): 108. DOI: 10.1007/s40899-022-00701-5.
Suciyono, Kenconojati H, Ulkhaq MF, Anggreani SF, Santanumurti MB, Kadim MK, Arbi UY, Amran RH, Imlani AH 2024. Profile of Pangpang Bay (Banyuwangi, Indonesia) based on water, sediment type, and macrobenthic diversity. Mesir J Aquat Res 50 (3): 414-423. DOI: 10.1016/j.ejar.2024.08.001.
Sudarso J, Suryono T, Yoga GP, Samir O, Imroatushshoolikhah, Ibrahim A. 2021. The impact of anthropogenic activities on benthic macroinvertebrates community in the Ranggeh River. J Ecol Eng 22 (55): 179-190. DOI: 10.12911/22998993/135773.
Sudaryanti S, Herawati EY. 2024. The river health of Alista River based on macroinvertebrates communities at Selorejo Village Dau Subdistrict Malang Regency. IOP Conf Ser Earth Environ Sci 1328 (1): 012008. DOI: 10.1088/17551315/1328/1/-012008.
Sudaryanti S. 2022. Makroinvertebrata Bentik untuk Bioassessment Kesehatan Daerah Aliran Sungai (DAS). UB Media Nusa Creative, Malang. [Indonesian]
Sumekar Y, Widayat D. 2021. The effect of weed management on seed banks in paddy rice fields. Res Sq 12: 1-12. DOI: 10.21203/rs.3.rs-1047098/v1.
Sumudumali RGI, Jayawardana JMCK. 2021. A review of biological monitoring of aquatic ecosystems approaches: with special reference to macroinvertebrates and pesticide pollution. Environ Manag 67 (2): 263-276. DOI: 10.1007/s00267-020-01423-0.
Varol M, Tokatli C. 2023. Evaluation of the water quality of a highly polluted stream with water quality indices and health risk assessment methods. Chemosphere 311: 137096. DOI: 10.1016/j.chemosphere.2022.137096.
Wikurendra EA, Syafiuddin A, Nurika G, Elisanti AD. 2022. Water quality analysis of pucang river, sidoarjo regency to control water pollution. Environ Qual Manag 32 (1): 133-144. DOI: 10.1002/tqem.21855.
Zou W, Tolonen KT, Zhu G, Qin B, Zhang Y, Cao Z, Peng K, Cai Y, Gong Z. 2019. Catastrophic effects of sand mining on macroinvertebrates in a large shallow lake with implications for management. Sci Total Environ 695: 133706. 10.1016/j.scitotenv.2019.133706.

Most read articles by the same author(s)

1 2 > >>