The bioactivity of bacterium and fungi living associate with the sponge Reniera sp. against multidrug-resistant Staphylococcus aureus and Escherichia coli

##plugins.themes.bootstrap3.article.main##

AGUS TRIANTO
NIRWANI
OKTORA SUSANTI
DIANSARI MAESAROH
OCKY KARNA RADJASA

Abstract

Abstract. Trianto A, Nirwani, Susanti O, Maesaroh D, Radjasa OK. 2019. The bioactivity of bacterium and fungi living associate with the sponge Reniera sp. against multidrug-resistant Staphylococcus aureus and Escherichia coli. Biodiversitas 20: 2302-2307. The study aimed to isolate and identify the sponge-associated microorganisms producing the antibacterial substances. The sponge Reniera sp. was collected by hand during skin diving in Karimunjawa Islands, Indonesia. The microbial symbionts were isolated with the dilution method and screened with the overlay method against the MDR S. aureus and E. coli. The bacterium was cultured in Zobell medium, while the fungi were cultured in malt extract broth (MEB) medium. The isolates were identified based on the molecular method. A total of 46 bacteria and 43 fungi were isolated, which 7 bacteria and 20 fungi exhibited antibacterial activity against the MDR E. coli and S. aureus strains. The molecular identification revealed that the active isolates close to Pseudoalteromonas maricaloris (99%), Aspergillus nomius (96%), Eurotium rubrum (99%), and Penicillium sp. (100%). Fractionation of K.J.16.U extract gave a fraction that active to the S. aureus and E. coli strains at concentration 150 and 15 µg disk-1. The fraction K.J.16.U.1.4.4 exhibited stronger activity than that exhibited by chloramphenicol at 150 µg disk-1. The sponge Reniera sp. collected from Karimunjawa Islands comprise bacterial and fungal isolates produced antibacterial compounds that inhibited the growth the MDR E. coli and S. aureus strains.

##plugins.themes.bootstrap3.article.details##

References
Aguila-Ramírez R. N., Hernández-Guerrero C. J., González-Acosta B., Id-Daoud G., Hewitt S., Pope J., 2014. Antifouling activity of symbiotic bacteria from sponge Aplysina gerardogreeni. Int Biodeterior Biodegrad 90:64–70. Available from: http://dx.doi.org/10.1016/j.ibiod.2014.02.003
Afonso E., Raquel C., Valadares L., Peporine N., Santos F., Tallarico M., 2017. Aflatoxins produced by Aspergillus nomius ASR3 , a pathogen isolated from the leaf-cutter ant Atta sexdens rubropilosa. Revista Brasileira de Farmacognosia. 27:529–32.
Anand T. P., Bhat A. W., Shouche Y. S., Roy U., Siddharth J., Sarma S. P., 2006. Antimicrobial activity of marine bacteria associated with sponges from the waters off the coast of South East India. Microbiol Res. 16: 252—262.
Asagabaldan M.A., Ayuningrum D., Kristiana R., Sabdono A., Radjasa O. K., Trianto A., 2017. Identification and Antibacterial Activity of Bacteria Isolated from Marine Sponge Haliclona (Reniera) sp. against Multi-Drug Resistant Human Pathogen. IOP Conference Series: Earth Env Sci. 55:1.
Bell J. J., 2008. The functional roles of marine sponges. Estuary Coast Shelf Sci. 79(3):341–53.
Butinar L., Zalar P., Frisvad J. C., Gunde-Cimerman N., 2005. The genus Eurotium members of indigenous fungal community in hypersaline waters of salterns. FEMS Microbiology Ecology 51: 155–166
Calderari T. O., Iamanaka B. T., Frisvad J. C., Pitt J. I., Sartori D., Luiz J., 2013. The biodiversity of Aspergillus section Flavi in brazil nuts?: From rainforest to consumer. Int. J. Food Microbiol. 160:267–72.
Engel S., Jensen P. R., Fenical W., 2002. Chemical ecology of marine microbial defense. J Chem Ecol. 28: 1971–1985.
Hooper J. N. A., 2003. Sponguide: Guide to sponge collection and identification, version 2003. Queensland Museum, Australia available on http://www.qm.qld.gov.au/~/media/ Documents/Find+out+about/ Animals + of+ Queensland/ Sea +life/sponguide-2003.pdf.
Ivanova E. P., Shevchenko L. S., Sawabe T., Lysenko A. M., Svetashev V. I., Gorshkova N. M., Satomi M., Christen R., Mikhailov V. V., 2002. Pseudoalteromonas maricaloris sp. nov. isolated from an Australian sponge and reclassification of Pseudoalteromonas aurantia NCIMB 2033 as Pseudoalteromonas flavipulchra sp. nov. ?Int J Syst Evol Microbiol. 52: 32–71.
Kang D. W., Kyung J. L., Chung J. S., 2013. Two new marine sponges of the genus Haliclona (Haplosclerida: Chalinidae) from Korea. Anim Syst Evol Divers. 29:51–55.
Kamauchi H., Kinoshita K., Sugita T., Koyama K., 2016. Conditional changes enhanced production of bioactive metabolites of marine derived fungus Eurotium rubrum. Bioorg Med Chem Lett. 26:4911–4.
Kikuchi S., Okada K., Cho Y., Yoshida S., Kwon E., Yotsu-Yamashita M., 2018. Isolation and structure determination of lysiformine from bacteria associated with marine sponge Halichondria okadai. Tetrahedron. 74(27):3742–7.
Kiran G. S., Sekar S., Ramasamy P., Thinesh T., Hassan S., Lipton A. N., 2017. Marine sponge microbial association: Towards disclosing unique symbiotic interactions. Mar Environ Res. 140 (November 2017):169–79
Li X. S., Tan M. H., Lu M. M., Liu C. X., Guo Z. Y., Zhang L., 2017. New ?-pyranone and nucleoside derivatives from Penicillium sp. Vol. 20, Phytochemistry Letters. p. 285–8.
Lunder M., Drevenšek G., Hawlina S., Sep?i? K., Žiberna L., 2012. Cardiovascular effects induced by polymeric 3-alkylpyridinium salts from the marine sponge Reniera sarai. Toxicon. 60(6):1041–8.
Ozdemir G., Karabay N. U., Dalay M. C., Pazarbasi B., 2006. Antimicrobial activities of the volatile component and various extracts of Dictyopteris membranaceae and Cystoseira barbata from the coast of Izmir, Turkey. Pharm Biol. 44: 183–188.
Radjasa O.K., Sabdono A., 2003. Screening of secondary metabolite-producing bacteria associated with corals using 16S rDNA-based approach. J Coast Develop. 7 : 11–19.
Radjasa O. K., Salasia S. I. O., Sabdono A., Weise J., Imhoff J. F., Lammler C., Risk M. J., 2007. Antibacterial activity of marine bacterium Pseudomonas sp. associated with soft coral Sinularia polydactyla against Streptococcus equi subsp. Zooepidemicus. Int J Pharmacol. 3:170–174.
Rakchai N., H-Kittikun A., Zimmermann W., 2016. Journal of Molecular Catalysis B?: Enzymatic The production of immobilized whole-cell lipase from Aspergillus nomius ST57 and the enhancement of the synthesis of fatty acid methyl esters using a two-step reaction. 133:10–3.
Saito N., Tanaka C., Koizumi Y. I., Suwanborirux K., Amnuoypol S., Pummangura S., 2004. Chemistry of Reniera mycins. Part 6: Transformation of Reniera mycin M into jorumycin and Reniera mycin J including oxidative degradation products, mimosamycin, renierone, and renierol acetate. Tetrahedron. 60(17):3873–81.
Salim A. A., Khalil Z. G., Capon R. J., 2012. Structural and stereochemical investigations into bromotyrosine-derived metabolites from southern Australian marine sponges Pseudoceratina spp. Tetrahedron. 6 :9802–9807.
Satheesh S., Ba-akdah M. A., Al-Sofyani A. A., 2016. Natural antifouling compound production by microbes associated with marine macroorganisms — A review. Electron J Biotechnol. 21:26–35.
Slack G. J., Puniani E., Frisvad J. C., Samson R. A., Miller J. D., Peterson S. W., 2009. Secondary metabolites from Eurotium species , Aspergillus calidoustus and A . insuetus common in Canadian homes with a review of their chemistry and biological activities. 113:480–90.
Souza E. T., de Lira D. P., de Queiroz A. C., da Silva D. J. C., de Aquino A. B., 2009. The antinociceptive and anti-inflammatory activities of caulerpin, a bisindole alkaloid isolated from seaweeds of the genus Caulerpa. Mar Drugs. 7:689–704.
Taylor M. W., Radax R., Steger D., Wagner M., 2007. Sponge-associated microorganisms: Evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev. 71:295–347.
Trianto A., Hermawan I., de Voogd N. J., Tanaka J., 2011. Halioxepine, a new meroditerpene from an Indonesian sponge Haliclona sp. Chem Pharm Bul. 59:1311–1313.
Trianto A., Radjasa O. K., Pribadi R., Widyaningsih S., Wittriansyah K., Yusidharta I., Wiratno, Riniatsih I., 2017. Isolation and identification of sponge-associated fungus producing anti multidrug-resistant (MDR) bacterial substances. Res J Pharm Biol Chem Sci. 8:63.
Trianto A., Sabdono A., Rochaddi B., Triningsih D. W., 2017. Exploration of marine sponges-associated fungi producing antifungal compounds. Asian Jr of Microbiol Biotech Env Sc. 19:588-593.
Urda C., Pérez M., Rodríguez J., Fernández R., Jiménez C., Cuevas C., 2018. Njaoamine I, a cytotoxic polycyclic alkaloid from the Haplosclerida sponge Haliclona (Reniera) sp. Tetrahedron Lett. 59(26):2577–80.
Wang H., Wang C., Tang Y., Sun B., Huang J., Song X., 2018. Pseudoalteromonas probiotics as potential biocontrol agents improve the survival of Penaeus vannamei challenged with acute hepatopancreatic necrosis disease (AHPND)-causing Vibrio parahaemolyticus. 494(January):30–6.
Walsh P. S., Metzger D.A., Higuchi R., 1991. Biotechniques 30th Anniversary gem: Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques. 10:506 – 513.
Yang B., Tao H., Lin X., Wang J., Liao S., Dong J., 2018. Prenylated indole alkaloids and chromone derivatives from the fungus Penicillium sp. SCSIO041218. Tetrahedron. 74(1):77–82.

Most read articles by the same author(s)

1 2 > >>