Diversity and potency of indigenous yeast from some palm juices for bioethanol production

##plugins.themes.bootstrap3.article.main##

TRIANIK WIDYANINGRUM
SUHARJONO SUHARJONO
TRI ARDYATI
AULANNI’AM AULANNI’AM

Abstract

Abstract. Widyaningrum T, Suharjono S, Ardyati T, Aulanni’am A. 2020. Diversity and potency of indigenous yeast from some palm juices for bioethanol production. Biodiversitas 21: 318-325. Main energy source commonly used by the community comes from fossil energy, especially petroleum. The crisis of energy showed that Indonesia's fossil energy reserves are limited. Based on this fact it is important to develop alternative energy that environmentally friendly and sustain, especially bioethanol. The objective of this research was to diversity and potency of indigenous yeast from palm juice of Arenga pinnata Merr., Cocos nucifera L., Nypa fruticans Wurmb., and Borassus flabellifer L. for bioethanol production. Yeast from juice of the four species of palm was isolated using Yeast Malt Extract Agar (YMEA). Those isolates were screen base on ethanol production in coconut water media. The potential of yeast isolates was identified base on 18S DNA sequence similarity. The four potential isolates of yeast were A3A from A. pinnata, K1A from C. nucifera, N3E from N. fruticans, and S1A from B. flabellifer have highest production of ethanol are 8.6 %, 14.2 %, 9.0 %, and 9.2 % respectively. Four potential isolates of yeast were A3A and N3E, K1A, and S1A have relationship with Saccharomyces cerevisiae NRRL Y-12632T, Pichia manshurica IFO 10726T, and Candida tropicalis ATCC 20615 respectively.

##plugins.themes.bootstrap3.article.details##

References
Agbogbo, K. A. and Frank K. 2008. Cellulosic ethanol production using recombinant Zymomonas mobilis, pp. 1–5. doi: DOI:10.1007/s10529-008-9728-z.
Ali, M. N., Mohd, M. K. and Mohiuddin, M. 2011. Ethanol fuel production through microbial extracellular enzymatic hydrolysis and fermentation from renewable agrobased cellulosic wastes. International Journal of Pharma and Bio Sciences 2(2): 321–331.
Apriwida. 2013. Study of Fermentation of Sweet Sorghum Stem (Sorghum bicolor (L) Moench) for Ethanol Production. Journal of Agricultural Engineering, 1(3): 180–187.
Aung, W., Watanabe, Y. and Hashinaga, F. 2013. Isolation and Phylogenetic Analysis of Two Thermotolerant, Fermentative Yeast Strains from Liquid Tapé Ketan (Indonesian Rice Wine). Food Science and Technology Research 18(2): 143–148. doi: 10.3136/fstr.18.143.
Balan,V., Chiaramonti, D. and Kumar, S. 2013. Review of US and EU Initiatives Toward Development, Demonstration, and Commercialization of Lignocellulosic Biofuels.Biofuels, Bioproducts and Biorefening 7(6): 732-759. doi: 10.1002/BBB.
Basavaraj, G. Parthasarathy, R, Achoth, Lalith R. Ravinder. C. 2013. Assessing Competitiveness of Sweet Sorghum for Ethanol Production: A Policy Analysis Matrix Approach. Agricultural Economics Research Review,26(1): 31–40.
Bharathiraja B., Jayamuthunagai J., Praveenkumar R., Vinoth Arulraj J. , Vinoshmuthukumar P. and Saravanaraj A. 2014. Bioethanol Production from Lignocellulosic Materials - An Overview The Scitech Journal 1 (1).
Blanco, P., Mirás-Avalos, J. M. and Orriols, I. 2012. Effect of must characteristics on the diversity of Saccharomyces strains and their prevalence in spontaneous fermentations. Journal of Applied Microbiology 112(5): 936–944. doi: 10.1111/j.1365-2672.2012.05278.x.
Borines, M. G., de Leon, R. L. and Cuello, J. L. 2013. Bioethanol production from the macroalgae Sargassum spp. Bioresource Technology: 22–29. doi: 10.1016/j.biortech.2013.03.108.
Charoenchai, C, G.H and Henschke, P. A. 1999. Effects of temperature, pH, and sugar concentration on the growth rates and cell biomass of wine yeasts. American Journal Etanol.Vitic 49(3): 283–288.
Goldemberg, J. 2006. The promise of clean energy. Energy Policy 34(15): 2185–2190. doi: 10.1016/j.enpol.2005.03.009.
Hanif, M., Mahlia,T. M. I., Aditiya, H.B., and Bakar, A. M.S. 2017. Energy and environmental assessments of bioethanol production from Sri Kanji 1 cassava in Malaysia. Biofuel Research Journal 13: 537-544. doi: 10.18331/brj2017.4.1.3.
Herkert PF1, Gomes RR1, Muro MD, Pinheiro RL, Fornari G, Vicente VA. 2015. In vitro susceptibility and molecular characterization of Candida spp. from candidemic patients. Rev Iberoam Micol. doi: 10.1016/j.riam.2014.
Hoekman, S. K. 2009. Biofuels in the U.S. - Challenges and Opportunities. Renewable Energy, 34(1): 14–22. doi: 10.1016/j.renene.2008.04.030.
Jackson, B. and Jayanthy, T. 2014. Determination of sucrose in raw sugarcane juice by microwave method. Indian Journal of Science and Technology 7(5): 566–570.
John, R.P., Anisha, G. S. K., Nampoothiri, M., and Pandey, A. 2011. Micro and Macroalga Biomass: A Renewable Source For Bioethanol. Bioresource Technology 102 (1): 186–193. doi: 10.1016/j.biortech.2010.06.139.
Kiran, B. R., Kumar, D. and Deshmukh. 2014. Perspectives Of Microalgal Biofuels As a Renewable Source Of Energy. Energy Conversion Management 88 (2): 1228–1244.
Kumar, S., Stecher, G., Li, M., Knyaz,C., and Tamura, K. 2018. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution 35(6):1547–1549. doi: 10.1093/molbev/msy096.
Kumar, S. A. and Pushpa, A. 2012. Saccharification by fungi and ethanol production by bacteria using lignocellulosic materials. International Research Journal of Pharmacy 3(5): 411–414.
Lin, Y., Zhank, W., and Kong, H. 2012. Factors Affecting Ethanol Fermentation Using Saccharomyces cerevisiae BY4742. Biomass- Bioenergy 47: 395–401.
Liu, R. and Shen, F. 2008. Impacts of Main Factors on Bioethanol Fermentation from Stalk Juice of Sweet Sorghum by Immobilized Saccharomyces cerevisiae (CICC 1308). Bioresource Technology 99: 847–854.
MarelneCot, M.M.O. Loret, J. Francois. 2007. Physiological Behaviour of Saccharomyces cerevisiae in Aerated Fed-Batch Fermentation for High Level Production of Bioethanol, FEMS Yeast Res. 7 (1): 22–32.
Muhammad, Y., Hadi, Bashar, B, Ahmad M, and Dogarai, S. 2016. Bioethanol Production from Neem Tree Leaves (Azadirachtca indica) Using Saccharomyces cerevisiae as Fermenting Agent. IOSR Journal of Applied Chemistry Ver. I 9(3): 32–37. doi: 10.9790/5736-0903013237.
Naknean, P., Meenune, M. and Roudaut, G. 2010. Characterization of palm sap harvested in Songkhla province, southern Thailand. International Food Research Journal 17(4): 977–986.
Narendranath, N. V. and P. R. 2005. Relationship Between pH and Medium Dissolved Solids In Terms Of Growth And Metabolism Of Lactobacilli and Saccharomyces cerevisiae During Ethanol Production. Applied Enviromental Microbiology 71(5) : 2239–2243.
Ogbonda, K. H. and D. B. K.K. 2013. Effect of Temperature and pH on Ethanol Production by a Blastomyces Species Isolated from The Intestine of Oil Palm Weevil (Rhynchophorus palmarum, coleoptera). African Journal of Biotechnology, 12(6): 588–591.
Ouoba, L., Kando I., Parkouda C., Sawadogo-Lingani H., D. and S. J. P. 2012. The Microbiology of Bandji, Palm Wine of Borassus akeassii from Burkina Faso: Identification And Genotypic Diversity Of Yeasts, Lactic Acid And Acetic Acid Bacteria. Journal of Applied Microbiology 113(6): 1428–1441.
Phisalaphong, M.N. Srirattana, W. T. 2010. Mathematical Modeling To Investigate Temperature Efect on Kinetic Parameters of Ethanol Fermentation. Journal Biochemical Engeenering 28(1): pp. 36–43.
Rahmawati. 2010. Utilization of Cassava Skin Waste (Manihot utilissima Pohl.) and Pineapple Skin (Ananas comosus L.) on Bioethanol Production Using Aspergillus niger. Journal of Food Technology Application Research 2(2): 73–75.
Rani, P., Sharma S, Garg F.C., Raj, K., and Wati, L. 2010. Ethanol Production from Potato Flour by Saccharomyces cerevisiae. Indian Journal of Science and Technology. 3(7): 733–736.
Ray, R. 2013. Sampling Biological Evidence for DNA Extraction. Forensic DNA Biology.
Riyanti, E. I. 2011. Some Genes in Bacteria Responsible for Bioethanol Production. Agricultural Research and Development Journal 30(2): 23–25.
Saputra, Ridlo, A., and Widowati, I. 2012. Study of Seaweed Sargassum duplicatum J. G. Agardh as Producer of Bioethanol by Acid Hydrolysis and Fermentation Process. .Journal of Marine Research 1(2): 145–151.
Shafiee, S. and Topal, E. 2009. When Will Fossil Fuel Reserves Be Diminished. Energy Policy 37(1): 181–189.
Shamim, R.A, Sarkar, M. K. I., Islam, M. R.,Hossain, K, Nahar, K., Roy, C. K., Uddin. M.E. and Choudhury, N. 2016. Isolation of Yeasts from Raisins and Palm-Juice and Ethanol Production in Molasses Medium Indian Journal of Science and Technology 9(12). doi: 10.17485/ijst/2016/v9i12/85509.
Tuntiwongwanich, S. and Leenanon, B. 2009. Morphology and Identification of Yeasts Isolated from Toddy Palm in Thailand. Journal of Microscopy Society of Thailand 23: 34–37.
Umamaheswari, M., Jayakumari, M., Maheswari, K., Subashree, M., Mala, P., Sevanthi, T., and Manikandan, T. 2010. Bioethanol Production From Cellulosic Materials. Asian Journal of Science and Technology 1(1): 5–11.
Wardani and Pertiwi. 2013. Ethanol Production from Sugarcane Drops by Saccharomyces cerevisiae Forming Flok (Nrrl – Y 265). Agritech 33(2): 131–139.
White,T.J., Brown, T.,Lee,S.,Talor,J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phyloge- netics. In: Innis MA, Gelfand H, Sninsky JS, White TJ (eds) PCR-protocols and applications: a laboratory manual, Academic, San Diego.
Widyaningrum, T., Prastowo, I., Parahadi, M., andPrasetyo, A. D. 2016. Production of Bioethanol from the Hydrolysate of Brown Seaweed (Sargassum crassifolium) using a Naturally ?-glucosidase Producing yeast Saccharomyces cereviceae JCM 3012. Biosciences Biotechnology Research Asia. 13 (3), 1333-1340. doi: 10.13005/bbra/2274.
Yenti, C. dan S. R. 2013) ‘Making Bioethanol from Nira Nipah Using Saccharomyces cerevisiae’, Journal of Applied Science 4(2): 105–108.
Zabed, H. Faruq, G.,Sahu, J.N. 2014. Bioethanol production from fermentable sugar juice. The Scientific World Journal. 1–11 doi: 10.1155/2014/957102.