Short Communication: Pattern of antibiotic resistance on extended-spectrum beta-lactamases genes producing Escherichia coli on laying hens in Blitar, Indonesia

##plugins.themes.bootstrap3.article.main##

FRESHINTA JELLIA WIBISONO
BAMBANG SUMIARTO
TRI UNTARI
MUSTOFA HELMI EFFENDI
DIAN AYU PERMATASARI
ADIANA MUTAMSARI WITANINGRUM

Abstract

Abstract. Wibisono FJ, Sumiarto B, Untari T, Effendi MH, Permatasari DA, Witaningrum AM. 2020. Short Communication: Pattern of antibiotic resistance on extended-spectrum beta-lactamases genes producing Escherichia coli on laying hens in Blitar, Indonesia. Biodiversitas 21: 4631-4635. The aims of this study were to determine the susceptibility pattern of phenotypic antibiotics on extended-spectrum beta-lactamases (ESBL) genes and genotype profiles of ESBL producing Escherichia coli strains isolated from cloacal samples of laying hens in Blitar. A total of 165 cloacal swab samples were successfully isolated 145 E. coli strains during the study taken from 5 subdistricts in Blitar. All the strains were examined for antibiotic resistance patterns by disk diffusion method with double-disk synergy test (DDST), followed testing with VITEK® 2 methods, molecular identification of ESBL coding genes using PCR. The results of this study showed that the characterization of nucleotide analysis from PCR amplification of ESBL-producing E. coli bacteria isolated from laying hens in Blitar showed that eight isolates were the dominant of CTX gene, followed by the TEM encoding gene of two isolates, and the SHV coding gene as much as one isolate. The presence of more than 1 encoding genes in the E. coli bacterial isolate was seen in 1 isolate, where the isolate carried the CTX gene and the SHV gene as well. All ESBL producing E. coli isolates were resistant to amoxicillin, ampicillin, cefazolin, cefotaxime, and ceftriaxone, and these ESBL isolates were more than 70% resistant to gentamicin, aztreonam, and trimethoprim/sulfamethoxazole. These results indicated that poultry is a potential reservoir for ESBL-producing E. coli. The presence of ESBL-producing E. coli in poultry requires strengthening antibiotic policy. This is important because the regulation of antibiotic use in poultry is gaining momentum to increase animal productivity and food safety in Blitar, Indonesia.

##plugins.themes.bootstrap3.article.details##

References
Ali T, Rahman S, Zhang L, Shahid M, Zhang S, Liu G, Gao, J and Han, B. (2016). ESBL Producing Escherichia coli from cows suffering mastitis in China Contain Clinical Class 1 Integrons with CTX-M Linked to ISCR1. Front. Cell. Infect. Microbiol, 7:1–11.

Biomerieux. (2017). AST and resistance detection, antibiotic suceptibility testing bioMérieux Industry.

Biutifasari V. (2018). Extended spectrum beta-lactamase (ESBL ). Ocean. Biomed. J. 1:1–6.

Bradford P. (2001). Extended spectrum betalactamase in the 21 century: characterization, epidemiology, and detection of this important resistant threat. Clin. Microbiol Rev.14:933–951.

Brower CH, Mandal S, Hayer S, Sran M, Zehra A, Patel SJ, Kaur R, Chatterjee L, Mishra S, Das BR, Singh P, Singh R, Gill JPS, Laxminarayan R. (2017). The prevalence of extended-spectrum beta-lactamase-producing multidrug-resistant Escherichia coli in poultry chickens and variation according to farming practices in Punjab, India. Environ. Health Perspect.125:1–10.

Carattoli A. (2008). Animal reservoirs for extended spectrum beta-lactamase producers. Clinical Microbiology and Infection, 14:1:117–123.

Chishimba K, Hang’ombe BM, Muzandu K, Mshana SE, Matee MI, Nakajima C, Suzuki Y. (2016). Detection of extended-spectrum beta-lactamase-producing Escherichia coli in market-ready chickens in Zambia. International Journal of Microbiology 2016:1-5

CLSI. (2017). M100 Performance Standards for Antimicrobial. 27th ed. Clinical and Laboratory Standards Institute, USA.

Effendi MH, Bintari IG, Aksoro EB, Hermawan IP. (2018). Detection of blaTEM gene of Klebsiella pneumoniae isolated from swab of food-producing animals in East Java. Trop. Anim. Sci. J., 41:174-178.

Effendi MH, Harijani N, Budiarto, Triningtya NP, Tyasningsih W, Plumeriastuti H. (2019). Prevalence of pathogenic Escherichia Coli isolated from subclinical mastitis in East Java Province, Indonesia. Indian Vet. J.,96:03:22-25.

Hammerum AM, Larsen J, Andersen VD, Lester CH, Skytte TSS, Hansen F, Olsen SS, Mordhorst H, Skov RL, Aarestrup FM, Agerso Y. (2014). Characterization of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli obtained from Danish pigs, pig farmers and their families from farms with high or no consumption of third- or fourth-generation cephalosporins. J. Antimicrob. Chemother,69:2650–2657.

Kang D, Sinuraya RK, Rostinawati T, Abdulah R. (2017). Gene blaCTX?M mutation as risk factor of antibiotic resistance. J. Farm. Klin. Indones., 6:135–152.

Kristianingtyas L, Effendi MH, Tyasningsih W, Kurniawan F. (2020). Genetic identification of blactx-M gene and blatem gene on extended spectrum beta lactamase (ESBL) producing Escherichia Coli from Dogs. Indian Vet. J., 97:01:17-21.

Kürekci C, Aydin M, Yipel M, Katouli M, Gündogdu A. (2017).Characterization of extended spectrum ?-lactamase (ESBL)-producing Escherichia coli in Asi (Orontes) River in Turkey. J Water and Health,15:788–798.

Kurniawati AF, Satyabakti P, Arbianti N. (2015). Differences in risk of multidrug resistance organisms (MDROS) according to risk, compliance and hygiene factors. J. Berk. Epidemiol., 3:277–289.

Lavilla S, Gonzalez-Lopez JJ, Miro, E., . Domínguez, A. Llagostera, M. Bartolomé, B. Mirelis, RM., Navarro, F. (2008). Dissemination of extended-spectrum beta-lactamase-producing bacteria: the foodborne outbreak lesson. J Antimicrob Chemother,61:6:1244–1251.

Lim CLL, Lee W, Lee ALC, Liew LTT, Nah SC, Wan CN, Chlebicki MP, Kwa AL. (2013). Evaluation of ertapenem use with impact assessment on extended-spectrum beta-lactamases (ESBL) production and gram-negative resistance in Singapore general hospital (SGH). BMC Infect. Dis.,13:1–10.

Masruroh CA, Sudarwanto MB, Latif H. (2016). Incidence rate of Escherichia coli producing extended spectrum beta-lactamase isolated from broiler faeces in Bogor City. J. Sain Vet.,34:42–49.

Paterson DL, Bonomo RA. (2005). Extended spectrum beta-lactamases: a Clinical Update. Clin. Microbiol. Rev.,18:657–686.

Pehlivano?lu F, Turuto?lu H, Ozturk D, Yardimci, H. (2017). Characterization of extended-spectrum beta-lactamase-producing fecal Escherichia coli isolates in laying hens. Ankara Univ Vet Fak Derg., 64:301-306.

Putra, AR, Effendi, MH, Koesdarto, S, Suwarno,S, Tyasningsih W and Estoepangestie, AT. (2020). Detection of the extended spectrum ?-lactamase produced by Escherichia coli from dairy cows by using the Vitek-2 method in Tulungagung regency, Indonesia. Iraqi Journal of Veterinary Sciences, 34, (1): 203-207.

Putra ARS, Effendi MH, Koesdarto S, Tyasningsih W. (2019). Molecular identification of extended spectrum beta-lactamase (ESBL) producing Escherichia coli isolated from dairy cows in East Java Province, Indonesia. Indian Vet. J.,96:10:26–30.

Randall LP, Clouting C, Horton R.A, Coldham NG, Wu G, Clifton-Hadley FA, Davies RH, Teale CJ. (2011). Prevalence of Escherichia coli carrying extended-spectrum beta-lactamases (CTX-M and TEM-52) from broiler chickens and turkeys in Great Britain between 2006 and 2009. J Antimicrob Chemother, 66:1: 86–95.

Reich F, Atanassova V, Klein G, (2013). Extended-spectrum beta-lactamase- and ampc-producing Enterobacteria in healthy broiler chickens, Germany. Emerg. Infect. Dis.19:1253–1259.

Rottier WC, Ammerlaan HSM, Bonten MJM. (2012). Effects of confounders and intermediates on the association of bacteraemia caused by extended-spectrum ????-lactamase-producing Enterobacteriaceae and patient outcome: a meta-analysis. J Antimicrob Chemother,67:6:1311–1320.

Saliu EM, Vahjen W, Zentek J. (2017). Types and prevalence of extended-spectrum beta-lactamase producing Enterobacteriaceae in poultry. Anim. Heal. Res. Rev.,18:46–57.

Seni J, Falgenhauer L, Simeo N, Mirambo MM, Imirzalioglu C, Matee M, Rweyemamu M, Chakraborty T, Mshana SE. (2016). Multiple ESBL-producing Escherichia coli sequence types carrying quinolone and aminoglycoside resistance genes circulating in companion and domestic farm animals in Mwanza, Tanzania, harbor commonly occurring plasmids. Front. Microbiol., 7:1–8.

Suardana IW, Utama IH, Putriningsih PAS, Rudyanto MD. (2014). Antibiotic sensitivity test of Escherichia coli O157: H7 isolates from chicken feces. Bul. Vet. Udayana, 6:19–27.

Sudarwanto MB, Lukman DW, Latif H, Pisestyani H, Sukmawinata E, Akineden Ö, Usleber E. (2016). CTX-M producing Escherichia coli isolated from cattle feces in Bogor slaughterhouse, Indonesia. Asian Pac. J. Trop. Biomed., 6:605–608.

Sudarwanto MB, Lukman DW, Purnawarman T, Latif H, Pisestyani H, Sukmawinata E. (2017). Multidrug resistance extended spectrum beta-lactamase and AmpC producing Escherichia coli isolated from the environment of Bogor Slaughterhouse, Indonesia. Asian Pac. J. Trop. Biomed.,7:708–711.

Tutun H, Karagoz A, Altintas L, Kocak N. (2019). Determination of antibiotic susceptibility, ESBL genes and pulsed-field gel electrophoresis profiles of extended-spectrum ?-lactamase-containing Escherichia coli isolates. Ankara Univ Vet Fak Derg., 66:407-416.

Wibisono, F.J. Sumiarto, B., Untari, T., Effendi, M.H., Permatasari, D.A., Witaningrum. A.M. 2020. The Presence of Extended Spectrum Beta-Lactamase (ESBL) Producing Escherichia coli On Layer Chicken Farms In Blitar Area, Indonesia. BIODIVERSITAS, 21 (6): 2667-2671

Most read articles by the same author(s)

1 2 3 > >>