Exploring of promising bacteria from the rhizosphere of maize, cocoa and lamtoro

##plugins.themes.bootstrap3.article.main##

SUKMAWATI
AMBO ALA
BAHARUDDIN PATANDJENGI
SIKSTUS GUSLI

Abstract

Abstract. Sukmawati, Ala A, Patandjengi B, Gusli S. 2020. Exploring of promising bacteria from the rhizosphere of maize, cocoa and lamtoro. Biodiversitas 21: 5665-5673. Alginate-producing bacteria are important for improving the quality of dry land, as they can both dissolve phosphate and fix nitrogen. Until now, the alginate-producing bacteria are largely isolated from seaweed. These bacteria were from the root ecosystem of cultivated plants. This study was conducted to explore bacteria that were capable of producing alginates, dissolving phosphates, and fixing nitrogen from the rhizosphere of corn (Zea mays), cocoa (Theobroma cacao), and lamtoro (Leucaena leucocephala). The characterization was carried out both morphologically and physiologically. A total of 17 isolates were successfully grown on alginate media, of which six isolates were from maize rhizosphere, five isolates from cocoa, and six isolates from the lamtoro rhizosphere. Bacterial isolates from the rhizosphere of maize and cocoa varied in terms of colony colors. In contrast, isolates from the lamtoro rhizosphere varied in colony forms. The KK1-40 isolates showed the highest cell biomass and dry weight which were 0.082 g mL-1 and 0.068 g respectively. The KK3-32 isolate showed the highest phosphate dissolution concentration of 10.85 mg L-1 with phosphate solubility efficiency value (PSE) and phosphate solubility index (PSI) which were 166.7 and a phosphate solubility index (PSI) 2.67 with a phosphate dissolution concentration of 10.85 mg L-1. LR1-25 isolates were able to fix the highest amount of nitrogen with a total N content of 0.36%. Isolates KK1-40 and LR1-25 were identified as Gram-negative bacteria and isolate KK-32 were identified as Gram-positive bacteria. The bacterial isolates KK1-40, KK3-32, and LR1-25 were superior bacteria that can be formulated to increase the productivity of dry land.

##plugins.themes.bootstrap3.article.details##

References
Ahmad, I., & Husain, F. M. (2017). Biofilms in Plant and Soil Health. In Biofilms in Plant and Soil Health. https://doi.org/10.1002/9781119246329
Arfarita, N., Muhibuddin, A., & Imai, T. (2019). Azotobacter population, soil nitrogen and groundnut growth in mercury-contaminated tailing inoculated with Azotobacter. J. Degrade. Min. Land Manage, 6, 1617–1623. https://doi.org/10.15243/jdmlm. 2019.062.1617.
B. Muhlestein, J. (2011). Effect of the Chinese Drugs Nao Xintong and Dan Hong on Markers of Inflammation and the Lipid Profile in a Hypercholesterolemic Rabbit Model. Journal of Clinical & Experimental Cardiology, 02(11), 16–18. https://doi.org/10.4172/2155-9880.1000168
Barreca, S., Orecchio, S., & Pace, A. (2014). The effect of montmorillonite clay in alginate gel beads for polychlorinated biphenyl adsorption: Isothermal and kinetic studies. Applied Clay Science, 99, 220–228. https://doi.org/10.1016/j.clay.2014.06.037
Ben Abdallah, R. A., & Mejdoub-Trabelsi, B. M.-. (2016). Isolation of Endophytic Bacteria from Withania Somnifera and Assessment of their Ability to Suppress Fusarium Wilt Disease in Tomato and to Promote Plant Growth. Journal of Plant Pathology & Microbiology, 07(05). https://doi.org/10.4172/2157-7471.1000352
Berg, G., & Smalla, K. (2009). Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. 1–13. https://doi.org/10.1111/j.1574-6941.2009.00654.x
Bowen, G. ., & Rovira, A. . (1999). The Rhizosphere and its management to improve plant growth. Advances in Agronomy, Volume 66, Pages 1-102. https://doi.org/https://doi.org/10.1016/S0065-2113(08)60425-3
Bremer, P. J., & Geesey, G. G. (1991). Biofouling?: The Journal of Bioadhesion and Biofilm Research An evaluation of biofilm development utilizing non ? destructive attenuated total reflectance Fourier transform infrared spectroscopy. Biofouling, 3, 89–100. https://doi.org/10.1080/08927019109378165
Cappucino, J. G., & Sherman, N. (2014). New Features Make the Micro Lab More Clinical Application Gram Staining?: The First. In J. G. Cappuccino (Ed.), Clinical application (XI). Pearson Education. https://www.pearson.com/us/higher-education/product/Cappuccino-Microbiology-A-Laboratory-Manual-10th-Edition/9780321840226.html
Chang, W. S., Van De Mortel, M., Nielsen, L., De Guzman, G. N., Li, X., & Halverson, L. J. (2007). Alginate production by Pseudomonas putida creates a hydrated microenvironment and contributes to biofilm architecture and stress tolerance under water-limiting conditions. Journal of Bacteriology, 189(22), 8290–8299. https://doi.org/10.1128/JB.00727-07
Chen, Q., & Liu, S. (2019). Identification and Characterization of the Phosphate-Solubilizing Bacterium Pantoea sp . S32 in Reclamation Soil in Shanxi , China. 10(September), 1–12. https://doi.org/10.3389/fmicb.2019.02171
Chenu, C. (2002). Interactions Between Microorganisms and Soil Particles Part I Fundamentals of Soil Particle ± Microorganism Interactions. Interactions between Soil Particles and Microorganisms - Impact on the Terrestrial Ecosystem:An Overview., January 2002, 274–302. https://www.researchgate.net/publication/232074594_Interactions_Between_Microorganisms_and_Soil_Particles/link/0fcfd50756ebb8f961000000/download
Costa, O. Y. A., Raaijmakers, J. M., & Kuramae, E. E. (2018). Microbial extracellular polymeric substances: Ecological function and impact on soil aggregation. Frontiers in Microbiology, 9(JUL), 1–14. https://doi.org/10.3389/fmicb.2018.01636
Davis, T. A., Volesky, B., & Mucci, A. (2003). A review of the biochemistry of heavy metal biosorption by brown algae. 37, 4311–4330. https://doi.org/10.1016/S0043-1354(03)00293-8
Deng, S., Wipf, H. M. L., Pierroz, G., Raab, T. K., Khanna, R., & Coleman-Derr, D. (2019). A Plant Growth-Promoting Microbial Soil Amendment Dynamically Alters the Strawberry Root Bacterial Microbiome. Scientific Reports, 9(1), 1–15. https://doi.org/10.1038/s41598-019-53623-2
Edathil, A. A., Pal, P., & Banat, F. (2018). Alginate clay hybrid composite adsorbents for the reclamation of industrial lean methyldiethanolamine solutions. Applied Clay Science, 156(September 2017), 213–223. https://doi.org/10.1016/j.clay.2018.02.015
Emtiazi, G., Ethemadifar, Z., & Habibi, M. H. (2004). Production of extra-cellular polymer in Azotobacter and biosorption of metal by exopolymer. Journal of Biotechnology, 3(June), 330–333. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.491.7735&rep=rep1&type=pdf
Etesami, H., & Maheshwari, D. K. (2018). Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects. Ecotoxicology and Environmental Safety, 156(October 2017), 225–246. https://doi.org/10.1016/j.ecoenv.2018.03.013
Eyler, E. (2013). Pouring agar plates and streaking or spreading to isolate individual colonies. In Methods in Enzymology (1st ed., Vol. 533). Elsevier Inc. https://doi.org/10.1016/B978-0-12-420067-8.00001-5
FAO. (2008). Guide to laboratory establishment for plant nutrient analysis, Food and Agriculture Organization of the United Nations, Rome, 2008. In M. R. Motsara (Ed.), Fao Fertilizer and Plant Nutrition Bulletin 19. Electronic Publishing Policy and Support Branch Communication Division FAO. http://www.fao.org/3/i0131e/i0131e.pdf
FAO. (2017). Water for Sustainable Food and Agriculture Water for Sustainable Food and Agriculture. In A report produced for the G20 Presidency of Germany. http://www.fao.org/3/a-i7959e.pdf
Freeman, B. C., Chen, C., Yu, X., Nielsen, L., Peterson, K., & Beattie, G. A. (2013). Physiological and Transcriptional Responses to Osmotic Stress of Two Pseudomonas syringae Strains That Differ in Epiphytic Fitness and. 195(20), 4742–4752. https://doi.org/10.1128/JB.00787-13
Furuyama Lima, A. M., De Freitas Lima, M., Garrido Assis, O. B., Raabe, A., Amoroso, H. C., De Oliveira Tiera, V. A., De Andrade, M. B., & José Tiera, M. (2018). Synthesis and physicochemical characterization of multiwalled carbon nanotubes/hydroxamic alginate nanocomposite scaffolds. Journal of Nanomaterials, 2018. https://doi.org/10.1155/2018/4218270
Gardella, J. A., Grobe, L. I., Hopson, W. L., & Eyring, E. M. (1984). Comparison of Attenuated Total Reflectance and Photoacoustic Sampling for Surface Analysis of Polymer Mixtures by Fourier Transform Infrared Spectroscopy. 2(2), 1169–1177. https://doi.org/https://doi.org/10.1021/ac00271a026
Gaurav, S. S., Sachin, C., & Chandra, M. (2009). Exoplysaccharides and lipopolysaccharide produktion by sinorhizobiobium fredi Tn5 mutans infection V igna radiata L . 4(5), 32–38. https://doi.org/https://doi.org/10.1111/j.1365-2389.1988.tb01203.x
Goh, C. H., Heng, P. W. S., & Chan, L. W. (2012). Alginates as a useful natural polymer for microencapsulation and therapeutic applications. Carbohydrate Polymers, 88(1), 1–12. https://doi.org/10.1016/j.carbpol.2011.11.012
Hay, I. D., Rehman, Z. U., Moradali, M. F., Wang, Y., & Rehm, B. H. A. (2013). Minireview Microbial alginate production , modification and its applications. https://doi.org/10.1111/1751-7915.12076
He, Y., Wu, Z., Tu, L., Han, Y., Zhang, G., & Li, C. (2015). Applied Clay Science Encapsulation and characterization of slow-release microbial fertilizer from the composites of bentonite and alginate. Applied Clay Science, 109–110, 68–75. https://doi.org/10.1016/j.clay.2015.02.001
Hiremath, P. S., & Bannigidad, P. (2011). Automated Gram-staining characterisation of bacterial cells using colour and cell wall properties. International Journal of Biomedical Engineering and Technology, 7(3), 257–265. https://doi.org/10.1504/IJBET.2011.043298
Isobe, K., & Ohte, N. (2014). Ecological perspectives on microbes involved in N-cycling. Microbes and Environments, 29(1), 4–16. https://doi.org/10.1264/jsme2.ME13159
Ivanov, A. G., Krol, M., Selstam, E., Sane, P. V., Sveshnikov, D., Park, Y. Il, Öquist, G., & Huner, N. P. A. (2007). The induction of CP43? by iron-stress in Synechococcus sp. PCC 7942 is associated with carotenoid accumulation and enhanced fatty acid unsaturation. Biochimica et Biophysica Acta - Bioenergetics, 1767(6), 807–813. https://doi.org/10.1016/j.bbabio.2007.02.006
Iwasaki, K. I., & Matsubara, Y. (2000). Purification of pectate oligosaccharides showing root-growth-promoting activity in lettuce using ultrafiltration and nanofiltration membranes. Journal of Bioscience and Bioengineering, 89(5), 495–497. https://doi.org/10.1016/S1389-1723(00)89104-5
Jindo, K., Mizumoto, H., Sawada, Y., Sanchez-Monedero, M. A., & Sonoki, T. (2014). Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences, 11(23), 6613–6621. https://doi.org/10.5194/bg-11-6613-2014
Kalayu, G. (2019). Phosphate solubilizing microorganisms: Promising approach as biofertilizers. International Journal of Agronomy, 2019. https://doi.org/10.1155/2019/4917256
Kaur, V., Bera, M. B., Panesar, P. S., Kumar, H., & Kennedy, J. F. (2014). Welan gum: Microbial production, characterization, and applications. International Journal of Biological Macromolecules, 65, 454–461. https://doi.org/10.1016/j.ijbiomac.2014.01.061
Lawrie, G., Keen, I., Drew, B., Chandler-Temple, A., Rintoul, L., Fredericks, P., & Grøndahl, L. (2007). Interactions between alginate and chitosan biopolymers characterized using FTIR and XPS. Biomacromolecules, 8(8), 2533–2541. https://doi.org/10.1021/bm070014y
Lee, K. Y., & Mooney, D. J. (2012). Alginate: Properties and biomedical applications. Progress in Polymer Science (Oxford), 37(1), 106–126. https://doi.org/10.1016/j.progpolymsci.2011.06.003
Lesk, C., Rowhani, P., & Ramankutty, N. (2016). Influence of extreme weather disasters on global crop production. Nature, 529(7584), 84–87. https://doi.org/10.1038/nature16467
Mendes, R. (2013). Deciphering the Rhizosphere Microbiome. 1097(2011). https://doi.org/10.1126/science.1203980
Mori, T., Takahashi, M., Tanaka, R., Miyake, H., Shibata, T., Chow, S., Kuroda, K., Ueda, M., & Takeyama, H. (2016). Falsirhodobacter sp. alg1 Harbors Single Homologs of Endo and Exo-Type Alginate Lyases Efficient for Alginate Depolymerization. PLOS ONE, 11(5), e0155537. https://doi.org/10.1371/journal.pone.0155537
Nasser, A. Mingelgrin, U. and Gerstl, Z. (2008). Effect of Soil Moisture on the Release of Alachlor from Alginate-Based Controlled-Release Formulations. 1322–1327. https://doi.org/doi: 10.1021/jf0718392.
Naylor, D., & Coleman-derr, D. (2018). Drought Stress and Root-Associated Bacterial Communities. 8(January), 1–16. https://doi.org/10.3389/fpls.2017.02223
Ngumbi, E., & Kloepper, J. (2016). Bacterial-mediated drought tolerance: Current and future prospects. Applied Soil Ecology, 105, 109–125. https://doi.org/10.1016/j.apsoil.2016.04.009
Nosrati, R., Owlia, P., Saderi, H., Olamaee, M., Rasooli, I., & A, A. T. (2012a). Correlation between nitrogen fixation rate and alginate productivity of an indigenous Azotobacter vinelandii from Iran. 4(3), 153–159. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3465543/
Nosrati, R., Owlia, P., Saderi, H., Olamaee, M., Rasooli, I., & A, A. T. (2012b). Correlation between nitrogen fixation rate and alginate productivity of an indigenous Azotobacter vinelandii from Iran. 4(3), 153–159.
Pacheco-leyva, I., Pezoa, F. G., & Díaz-barrera, A. (2016). Alginate Biosynthesis in Azotobacter vinelandii?: Overview of Molecular Mechanisms in Connection with the Oxygen Availability. 2016, 11–13.
Pande, A., Pandey, P., Mehra, S., & Singh, M. (2017). Phenotypic and genotypic characterization of phosphate solubilizing bacteria and their efficiency on the growth of maize. Journal of Genetic Engineering and Biotechnology. https://doi.org/10.1016/j.jgeb.2017.06.005
Patel, S., Jinal, H. N., & Amaresan, N. (2017). Isolation and characterization of drought resistance bacteria for plant growth promoting properties and their effect on chilli (Capsicum annuum) seedling under salt stress. Biocatalysis and Agricultural Biotechnology, 12(September), 85–89. https://doi.org/10.1016/j.bcab.2017.09.002
Paul, D., & Sinha, S. N. (2017). Isolation and characterization of phosphate solubilizing bacterium Pseudomonas aeruginosa KUPSB12 with antibacterial potential from river Ganga, India. Annals of Agrarian Science, 15(1), 130–136. https://doi.org/10.1016/j.aasci.2016.10.001
Penman, A., & Sanderson, G. R. (1972). A method for the determination of uronic acid sequence in alginates. Carbohydrate Research, 25(2), 273–282. https://doi.org/10.1016/S0008-6215(00)81637-7
Philippot, L., Raaijmakers, J. M., Lemanceau, P., & Van Der Putten, W. H. (2013). Going back to the roots: The microbial ecology of the rhizosphere. Nature Reviews Microbiology, 11(11), 789–799. https://doi.org/10.1038/nrmicro3109
Rahman, S. S., Siddique, R., & Tabassum, N. (2017). Isolation and identification of halotolerant soil bacteria from coastal Patenga area. BMC Research Notes, 10(1), 4–9. https://doi.org/10.1186/s13104-017-2855-7
Repeta, D. J., Ferrón, S., Sosa, O. A., Johnson, C. G., Repeta, L. D., Acker, M., Delong, E. F., & Karl, D. M. (2016). Marine methane paradox explained by bacterial degradation of dissolved organic matter. Nature Geoscience, 9(12), 884–887. https://doi.org/10.1038/ngeo2837
Sá, C., Cardoso, P., & Figueira, E. (2019). Alginate as a feature of osmotolerance differentiation among soil bacteria isolated from wild legumes growing in Portugal. Science of the Total Environment, 681, 312–319. https://doi.org/10.1016/j.scitotenv.2019.05.050
Sabra, W., Zeng, A., Lünsdorf, H., & Deckwer, W. (2000). Effect of Oxygen on Formation and Structure of Azotobacter vinelandii Alginate and Its Role in Protecting Nitrogenase Effect of Oxygen on Formation and Structure of Azotobacter vinelandii Alginate and Its Role in Protecting Nitrogenase. 66(9). https://doi.org/10.1128/AEM.66.9.4037-4044.2000.Updated
Schimel, J., Balser, T., & Wallestein, M. (2007). Microbill steress-response physiology and its implications for ecosytem fungtion. 88(6), 1386–1394. https://doi.org/DOI: 10.1890/06-0219
Sheirdil, R. A., Hayat, R., Zhang, X.-X., Abbasi, N. A., Ali, S., Ahmed, M., Khattak, J. Z. K., & Ahmad, S. (2019). Exploring Potential Soil Bacteria for Sustainable Wheat (Triticum aestivum L.) Production. Sustainability, 11(12), 3361. https://doi.org/10.3390/su11123361
Shroff, P., & Parikh, S. (2018). Production and Characterization of Alginate Extracted From Paenibacillus Riograndensis. 4(560), 560–575. https://doi.org/10.26479/2018.0406.44
Sri Sudewi, Ala, A., Baharuddin, & Muh Farid. (2020). The isolation, characterization endophytic bacteria on indole-3-acetic acid-producing and phosphate solubilizing from roots of local rice plant Kamba in Bada Valley, Central Sulawesi. Biodiversitas Journal of Biological Diversity, 21(4), 1614–1624. https://doi.org/10.13057/biodiv/d210442
Stella, M., Suhaimi, M., Matthews, S., & Masduki, S. (2010). Selection of suitable growth medium for free-living diazotrophs isolated from compost (Pemilihan medium pertumbuhan yang sesuai untuk bakteria pengikat nitrogen hidup bebas yang dipencil daripada kompos). J. Trop. Agric. and Fd. Sc, 38(2), 211–219.
Subaryono, Peranginangin, R., Suhartono, M. T., & Zakaria, F. R. (2015). Isolation and Identification Bacteria Producing Alginate Lyase Derived from Seaweed Sargassum crassifolium. JPB Kelautan Dan Perikanan, 10, 1–9. https://doi.org/http://dx.doi.org/10.15578/jpbkp.v10i1.239
Sujana, M. G., Mishra, A., & Acharya, B. C. (2013). Hydrous ferric oxide doped alginate beads for fluoride removal: Adsorption kinetics and equilibrium studies. Applied Surface Science, 270, 767–776. https://doi.org/10.1016/j.apsusc.2013.01.157
Sukmawati, Ala, A., Baharuddin, & Gusli, S. (2020). Biochar interventions enriched with alginate-producing bacteria support the growth of maize in degraded soils Biochar interventions enriched with alginate-producing bacteria support the growth of maize in degraded soils. 0–10. https://doi.org/10.1088/1755-1315/486/1/012133
Suyono, & Baharuddin. (2019). Effectiveness formulation made from PGPR Bacillus spp. in the protection of shallot plants from fusarium wilt. IOP Conference Series: Earth and Environmental Science, 343(1). https://doi.org/10.1088/1755-1315/343/1/012252
Tang, J., Taniguchi, H., Chu, H., Zhou, Q., & Nagata, S. (2009). Isolation and characterization of alginate-degrading bacteria for disposal of seaweed wastes. 48, 38–43. https://doi.org/10.1111/j.1472-765X.2008.02481.x
Unno, Y., Okubo, K., Wasaki, J., Shinano, T., & Osaki, M. (2005). Plant growth promotion abilities and microscale bacterial dynamics in the rhizosphere of Lupin analysed by phytate utilization ability. Environmental Microbiology, 7(3), 396–404. https://doi.org/10.1111/j.1462-2920.2004.00701.x
Valpassos, M. A. R., Maltoni, K. L., Cassiolato, A. M. R., & Nahas, E. (2007). Recovery of soil microbiological properties in a degraded area planted with Corymbia citriodora and Leucaena leucocephala. Scientia Agricola, 64(1), 68–72. https://doi.org/10.1590/S0103-90162007000100010
van Teeseling, M. C. F., de Pedro, M. A., & Cava, F. (2017). Determinants of bacterial morphology: From fundamentals to possibilities for antimicrobial targeting. Frontiers in Microbiology, 8(JUL), 1–18. https://doi.org/10.3389/fmicb.2017.01264
Wardle, D. A. (1992). A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biological Reviews of the Cambridge Philosophical Society, 67(3), 321–358. https://doi.org/10.1111/j.1469-185X.1992.tb00728.x
Wingender, J., Neu, T. R., & Flemming, H. C. (1999). Microbial extracellular polymeric substances: characterization, structure, and function. Springer, 1–19. https://doi.org/10.1007/BF00582584
Xu, X., Iwamoto, Y., Kitamura, Y., Oda, T., & Muramatsu, T. (2003). Root growth-promoting activity of unsaturated oligomeric uronates from alginate on carrot and rice plants. Bioscience, Biotechnology and Biochemistry, 67(9), 2022–2025. https://doi.org/10.1271/bbb.67.2022
Yan, N., Marschner, P., Cao, W., Zuo, C., & Qin, W. (2015). In fl uence of salinity and water content on soil microorganisms. International Soil and Water Conservation Research, 1–8. https://doi.org/10.1016/j.iswcr.2015.11.003
Yi, Y., Huang, W., & Ge, Y. (2008). Exopolysaccharide: A novel important factor in the microbial dissolution of tricalcium phosphate. World Journal of Microbiology and Biotechnology, 24(7), 1059–1065. https://doi.org/10.1007/s11274-007-9575-4
Yonemoto, Y., Murata, K., Kimura, A., & Yamaguchi, H. (1991). Bacterial Alginate Lyase?: Characterization of Alginate Lyase-Producing Bacteria and Purification of the Enzyme. 72(3), 152–157. https://doi.org/https://doi.org/10.1016/0922-338X(91)90208-X
Young, K. D. (2007). Bacterial morphology: why have different shapes? Current Opinion in Microbiology, 10(6), 596–600. https://doi.org/10.1016/j.mib.2007.09.009
Zhang, Y., Liu, H., Yin, H., Wang, W., Zhao, X., & Du, Y. (2013). Nitric oxide mediates alginate oligosaccharides-induced root development in wheat (Triticum aestivum L.). Plant Physiology and Biochemistry, 71, 49–56. https://doi.org/10.1016/j.plaphy.2013.06.023
Zhang, Y., Yin, H., Zhao, X., Wang, W., Du, Y., He, A., & Sun, K. (2014). The promoting effects of alginate oligosaccharides on root development in Oryza sativa L. mediated by auxin signaling. Carbohydrate Polymers, 113, 446–454. https://doi.org/10.1016/j.carbpol.2014.06.079

Most read articles by the same author(s)

<< < 1 2