Development and regeneration of somatic embryos from leaves-derived calli of Coffea liberica




Abstract. Ardiyani F, Utami ESW, Purnobasuki H, Paramita SA. 2020. Development and regeneration of somatic embryos from leaves-derived calli of Coffea liberica. Biodiversitas 21: 5829-5834. Coffea liberica is an important and potentially commercial plant with a high economic value from the Coffea genus. Therefore, the availability of planting material is needed to increase productivity and ensure the sustainability of its farming. Somatic embryogenesis is a powerful propagation method used to produce clonal plants from limited genetic material. In the present research, we have shown that C. liberica could be successfully regenerated in vitro via somatic embryogenesis from leaves derived embryogenic callus. These calli were cultured on Murashige Skoog (MS) medium added with 1 mgL-1 BAP or in combination with 2.4 D (0.5, 1.0, 1.5 and 2 mgL-1) for embryo development induction. Furthermore, the medium containing only BAP was best for embryo development induction after culturing for 12 weeks, with the highest number of cotyledonary stage embryos (17.8%) and producing a total of embryo (20.2). Following cotyledonary stage embryo were cultured on new MS medium containing 0.5 mgL-1 BAP, 0.5 mgL-1 IAA, 0.5 mgL-1 NAA only, and 0.5 mgL-1 BAP in combination with 0.5 mgL-1 IAA or 0.5 mgL-1 NAA. Interestingly, the results showed that cotyledonary stage embryos were converted into complete plants at all treatment, but the MS medium containing 0.5 mgL-1 BAP was found to be the most effective in promoting regeneration with 2.6 leaves per-plantlet and height of 5.2 mm. Based morphological analysis confirm that the development of somatic embryo from leaves-derived calli of Coffea liberica started with the formation of embryo globular, heart, torpedo, cotyledonary stages, and finally conversion of cotyledonary embryo into complete plant.


Aga E, Khillare Y. 2017. In vitro multiplication of Coffea arabica L. from leaf explants through indirect somatic embryogenesis. International Journal of Botany Studies 2(1): 17-22.
Ahmed W, Feyissa T, Dasasa T. 2013. Somatic embryogenesis of a coffee (Coffea arabica L.) hybrid using leaf explants. Journal of Horticultural Science & Biotechnology 88 (4) 469-475. DOI: 10.1080/14620316.2013.11512993
Ardiyani F. 2015. Morphological characterization and identification of Coffea liberica callus of somatic embryogenesis propagation. Pelita perkebunan 31(2): 81-89.
Arnold S.V, Izabela. S, Peter, B, Julia. D, Lada. F. 2002. Developmental pathways of somatic embryogenesis. Plant Cell, Tissue and Organ Culture 69: 233-249.
Bonga JM, 2016. Conifer clonal propagation in tree improvement program. In vegetative propagation of forest trees; Park YS, Bonga JM, Moon HK., Eds: National Institute of Forest Science: Seoul, Korea, pp. 3-31.
Campos NA, Panis B , Carpentier SC. 2017. Evolution of biotechnology and the integration of omics technologies offer grea0t opportunities. Frontiers in Plants Science 21 (8): 1-12.
Davis AP, Govaerts R, Bridson DM, Stoffelen P. 2006. An annotated taxonomic conspectus of the genus Coffea (Rubiaceae). Botanical Journal of the Linnean Society 152 (4): 465-512.
Duncan DB. 1955. Multiple range and multiple F tests, Biometrics, vol. 11, no. 1, pp. 1-42.
Etienne H, Anthony F, Dussert S, Fernandez D, Lashermes P, Bertrand B. 2002. Biotechnological applications for the improvement of Coffee (Coffea arabica L.). In Vitro Cell Dev. Biol - Plant 38:129–138. doi: 10.1079/IVP2001273.
Etienne H, Breton D, Breitler JC, Bertrand B, Déchamp E, Awada R, Marraccini P, Léran S, Alpizar E, Campa C, Caurtel P, Georget F, Paul DJ. 2018. Coffee Somatic Embryogenesis: How Did Research, Experience Gained and Innovations Promote the Commercial Propagation of Elite Clones From the Two Cultivated Species? Review. Frontiers in Plant Science 12: 1-21.
Etienne H, Bertrand B. 2003. Somaclonal variation in Coffea arabica: Effects of genotype and embryogenic cell suspension age on frequency and phenotype of variants. Tree Physiology 23(6): 419-26. doi: 10.1093/treephys/23.6.419.
Etienne H, Dechamp E, Barry-Etienne D, Bertrand B. 2006. Bioreactors in coffee micropropagation. Brazilian Journal of Plant Physiology 18: 45-54.
Fu X, Qi L , Hulke B, Seiler G, Chien Jan C. 2017. Somatic embryogenesis from corolla tubes of interspecific amphiploids between cultivated sunflower (Helianthus annuus L.) and its wild species. Helia 40(66): 1-19. doi 10.1515/helia-2017-0006.
Gatica-Arias AM, Arrieta-Espinoza G, Esquivel AMS. 2008. Plant regeneration via indirect somatic embryogenesis and optimisation of genetic transformation in Coffea arabica L. cvs. Caturra and Catuaí. Electronic Journal of Biotechnology 11 (1): 1-12. https://doi.10.2225/vol11-issue1-fulltext-9.
Giridhar P, Kumar V, Indu EP, Ravishankar GA, Chandrasekar A. 2004. Thidiazuron induced somatic embryogenesis in Coffea arabica L. and Coffea canephora P ex Fr. Acta Bot. Croat 63 (1): 25–33.
Hashim ATZ, Ishak SK, Rosli M, Ong-Abdullah O, Siew-Eng MN, Husri, Bakar DA. 2018. Oil Palm (Elaeis guineensis Jacq.) Somatic Embryogenesis. In: Jain S., Gupta P. (eds) Step Wise Protocols for Somatic Embryogenesis of Important Woody Plants. Forestry Sciences 85.
Hazubska-Przybyl T, Ewelina Ratajczak E, Obarska A, Pers-Kamczyc E. 2020. Different roles of auxins in somatic Embryogenesis Efficiency in Two Picea Species. International Journal of Molecular Sciences 21 (3394): 1-22. doi:10.3390/ijms21093394.
Herrera AA, Gonzalez AK, Moo RC, Figueroa FRQ, Vargas VML, Zapata LCR, D'Hondt CB, Sol?´s VMS, Castano E. 2008. Expression of WUSCHEL in Coffea canephora causes ectopic morphogenesis and increases somatic embryogenesis. Plant Cell Tiss Organ Cult 94:171–180. doi. 10.1007/s11240-008-9401-1.
Ibrahim MSD, Hartati RSS, Rubiyo, Purwito A, Sudarsono. 2015. The induction of primary and secondary somatic embryogenesis for Arabica coffee propagation. Journal of Tropical Crop Science 2 (3): 6-13.
Jeminez, VM, Guevera E, Herrera J, Bangreth F. 2001. Endogenous hormone levels in habituated nucellar Citrus callus during the initial stages of regeneration. Plant Cell Rep 20: 92-100.
Jimenez VM. 2005. Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis. Plant Growth Regul 47: 91-110. doi:10.1007/s10725-005-3478-x.
Kahia J, Kirika M, Lubabali H, Mantel S. 2016. High-frequency direct somatic embryogenesis and plantlet regeneration from leaves derived from in vitro-germinated seedlings of a Coffea arabica hybrid cultivar. Hortscience 51 (9):1148-1152. doi: 10.21273/HORTSCI10771-16.
Konar S, Karmakar J, Ray A, Adhikari S, bandyopadhyay TK. 2018. Regeneration of plantlets through somatic embryogenesis from root derived calli of Hibiscus sabdariffa L. (Roselle) and assessment of genetic stability by flow cytometry and ISSR analysis. PLoS ONE 13(8): e0202324. pone.0202324.
Mira MM, Wally OSD, Elhiti M, El-Shanshory A, Reddy DS, Hill RD, Stasolla C. 2016. Jasmonic acid is a downstream component in the modulation of somatic embryogenesis by Arabidopsis Class 2 phytoglobin. Journal of Experimental Botany 67: 2231-2246. doi:10.1093/jxb/erw022.
Murashige T, Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473-497.
N’Diaye, A., V. Poncet., J. Louarn, S. Hamon, and M. Noirot. 2005. Genetic differentiation between Coffea liberica var. liberica and C. liberica var. dewevrei and comparison with C. canephora. Plant. Syst. Evol 253: 95-104.
Nic-Can GI , Galaz-Ávalos RM, De-La-Peña C, Alcazar-Magaña A, Wrobel K, Loyola-Vargas VM. 2015. Somatic embryogenesis: Identified factors that lead to embryogenic repression. A case of species of the same genus. PLoS ONE 10 (6): E0126414. doi:10.1371/JOURNAL.PONE.0126414.
Stefaan M, Mignon E. 2018. Somatic Embryogenesis as Key Technology for Shaping the Rubber Tree of the Future. Frontiers in plant science 9: 1804.
Venkataiah P, Bhanuprakash P, kalyan SS, subhash K. 2016. Somatic embryogenesis and plant regeneration of Capsicum baccatum L. Journal of Genetic Engineering and Biotechnology 14: 55-60.
Verma SK, Das AK, Gantait S, Gurel S, Gurell E. 2018. Influence of auxin and its polar transport inhibitor on the development of somatic embryos in Digitalis trojana. Biotech 8: 99.
Vondráková Z, Kraj?áková J, Fischerová L, Vágner M, Eliášová K. 2016. Physiology and role of plant growth regulators in somatic embryogenesis. In Vegetative Propagation of Forest Trees; Park YS, Bonga JM, Moon HK., Eds: National Institute of Forest Science: Seoul, Korea, pp. 123-169.
Vondráková Z, Eliášová K, Fischerová L,Vágner M. 2011. The role of auxins in somatic embryogenesis of Abies alba. Central European Journal of Biology 6(4) :587-596. doi: 10.2478/s11535-011-0035-7.
Yang, X and X. Zhang. 2010. Regulation of somatic embryogenesis in higher plants. Crit. Rev. Plant Sci 29: 36-57.
Zou S, Yao X, Zhong C, Li D, Wang Z, Huang H. 2019. Recurrent somatic embryogenesis and development of somatic embryos in Akebia trifoliata (Thunb.) Koidz (Lardizabalaceae). Plant Cell, Tissue and Organ Culture 1-12.

Most read articles by the same author(s)