Short Communication: The flowering process of Prunus cerasoides Buch.-Ham. Ex D.Don in Bali Botanic Garden




Abstract. Oktavia GAE, Iryadi R, Warseno T, Purnobasuki H. 2023. Short Communication: The flowering process of Prunus cerasoides Buch.-Ham. Ex D.Don in Bali Botanic Garden. Biodiversitas 24: 1186-1191. Prunus cerasoides Buch.-Ham. Ex D.Don is a native plant of the Indian-Indochinese floristic zone and one of the Eka Karya Bali Botanical Gardens' collection plants (EKBBG). Weather factors have an impact on the length of blossoming. Moreover, the microclimate variations study is a fascinating subject. A plant's adaptation is influenced by changes in the environment regularly. This research goal was to figure out how P. cerasoides flowers in EKBBG and how that relates to environmental parameters. The flowering time of four P. cerasoides trees from the EKBBG collection was observed. The weather from satellite data of the EKBBG Registration Unit provided environmental data in the form of air temperature, humidity, air pressure, and rainfall. The IBM SPSS Statistics 23 software was used to analyze the data. The results revealed that P. cerasoides in EKBBG flower twice a year, with the development stage of flower buds, blooming, and then the fall phase of the floral ornaments. Due to the blossoms falling, the fruit did not mature. Moreover, the number of blooms that develop is unaffected by temperature or UV index.


Agus C, Andriyanti D, Syahbudin A, Basori. A. 2016.Tanaman Langka Indonesia di KP4 UGM 2014. Gadjah Mada University Press, Yogyakarta.
Agustí M, Primo-Millo E. 2020. Flowering and fruit set. The Genus Citrus : 219–244.
Arora DS, Mahajan H. 2018. In Vitro Evaluation and Statistical Optimization of Antimicrobial Activity of Prunus cerasoides Stem Bark. Applied Biochemistry and Biotechnology 184 : 821–837.
Arora DS, Mahajan H. 2019. Major Phytoconstituents of Prunus cerasoides Responsible for Antimicrobial and Antibiofilm Potential Against Some Reference Strains of Pathogenic Bacteria and Clinical Isolates of MRSA. Applied Biochemistry and Biotechnology 188 (4):1185–1204.
Ascough GD, Nogemane N, Mtshali NP, Van Staden J. 2005. Flower abscission: Environmental control, internal regulation and physiological responses of plants. South African Journal of Botany 71 (3–4) : 287–301.
Bhuyan R, Pandhakar PB, Smetacek P. 2014. Two typically fruit and sap feeding Indian butterflies shift to flower nectar ( Lepidoptera?: Nymphalidae ). Nachrichten Des Entomologische Verein Apollo 34 (4): 218–220.
Bobrov AVFC, Romanov MS. 2019. Morphogenesis of fruits and types of fruit of angiosperms. Botany Letters 166 (3): 366–399.
Borghi M, Fernie A. 2017. Floral Metabolism of Sugars and Amino Acids: Implications for Pollinators’ Preferences and Seed and Fruit Set1. Plant Physiology 175:1510–1524.
Ding Y, Shi Y, Yang S. 2020. Molecular Regulation of Plant Responses to Environmental Temperatures. Molecular Plant 13 (4): 544–564, 2020.
Gan ES, Huang J, Ito T. 2013. Functional roles of histone modification, chromatin remodeling and microRNAs in arabidopsis flower development. International Review of Cell and Molecular Biology 305 (115–161).
Gray SB, Brady SM. 2016. Plant developmental responses to climate change. Developmental Biology 419 (1): 64-77.
Hatfield JL, Prueger JH. 2015. Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes 10: 4–10.
Idžojti? M. 2019. Introduction. Dendrology: Cones, Flowers, Fruits and Seeds: 11–25.
Iryadi R, Priyadi A, Darma IDP. 2017. Penggunaan Citra Satelit untuk Mengetahui Persebaran Dacrycarpus imbricatus (Blume) de Laub. di Bukit Tapak, Cagar Alam Batukahu Bali. Jurnal Ilmu Kehutanan 11 (2):130-141.
Joseph N, Anjum N, Tripathi YC. 2018. Prunus cerasoides D. Don: A review on its ethnomedicinal uses, phytochemistry and pharmacology. International Journal of Pharmaceutical Sciences Review and Research 48 (1):62–69.
Kim SD, Kim M, Wu HH, Jin BK, Jeon MS, Song YS. 2022. Prunus cerasoides extract and its component compounds upregulate neuronal neuroglobin levels, mediate antioxidant effects, and ameliorate functional losses in the mouse model of cerebral ischemia. Antioxidants 11(99): 1–24.
Kurniawan V, Putri D, Normasiwi S, Surya M. 2021. Phenology and morphological flower of Prunus cerasoides Buch.-Ham. ex D.Don. IOP Conference Series: Materials Science and Engineering 948: 1–8.
Kuswantoro F. 2017. Flower-Insect Visitor Interaction: Study Case on Rhododendron inundatum Sleumer in Bali Botanic Garden. Journal of Tropical Biodiversity and Biotechnology 2 (2): 35-38.
Levy YY, Dean C. 1998. The transition to flowering. Plant Cell 10 (12) 1973–1989.
Liu C, Xi W, Shen L, Tan C, Yu H. 2009. Regulation of Floral Patterning by Flowering Time Genes. Developmental Cell 16 (5): 711–722.
Normasiwi, S. 2015. Flowering Period of Three Species of Prunus Collection in Cibodas Botanic Garden. Widyariset 1 (1): 71–78.
Normasiwi S, Surya MI. 2016. The Potential Fruit Crop of Cibodas Botanical Garden. Biosaintifika: Journal of Biology & Biology Education 8 (2): 206–213.
Pelayo MA, Yamaguchi N, Ito T. 2021. One factor, many systems: the floral homeotic protein AGAMOUS and its epigenetic regulatory mechanisms. Current Opinion in Plant Biology 61: 102009.
POWO. (2021). Prunus cerasoides. Available at: <> Accessed January 16th 2021.
Primack RB, Higuchi H, Miller-Rushing AJ.2009. The impact of climate change on cherry trees and other species in Japan. Biological Conservation, 142 (9): 1943–1949.
Prunet N, Duncan K, Wellmer F. 2020. Imaging flowers: A guide to current microscopy and tomography techniques to study flower development. Journal of Experimental Botany 71 (10): .2898-2909.
Rindyastuti R, Hapsari L. 2017. Adaptasi Ekofisiologi Terhadap Iklim Tropis Kering?: Studi Anatomi Daun Sepuluh Jenis Tumbuhan Berkayu ( Ecophysiological adaptation to dry tropical climate?: a study of foliar anatomic structure of ten woody plant species ). Jurnal Biologi Indonesia 13 (1): 1–14.
Sarma B, Das K, Bora SS. 2020. Physiology of Fruit Development. International Journal of Current Microbiology and Applied Sciences 9 (6): 504–521.
Setiawan AB, Murti RH, Purwantoro A. 2016. Seedlessness and Fruit Quality Traits of Gibberellin Induced Parthenocarpic Fruit in Seven Tomato Genotypes (Solanum lycopersicum L.). Journal of Agricultural Science 8 (4): 84-91.
Siregar HM, Darma IDP. 2003. Biologi Bunga dan Perbanyakan Sakura (Prunus puddum Roxb . Ex . Wall.) di Kebun Raya Bali. BioSMART 5 (2): 106–110.
Sisco MR. 2021. The effects of weather experiences on climate change attitudes and behaviors. Current Opinion in Environmental Sustainability 52: 111–117.
Sutomo, Darma IDP, Sujarwo W, Priyadi A, Kuswantoro F, Iryadi R. 2018. Ecology of Bedugul Basin Bali (A compilation of ecological studies conducted in Bedugul by Bali Botanical Garden researchers). SEAMEO BIOTROP, Bogor.
Teotia S, Tang G. 2015. To Bloom or Not to Bloom: Role of MicroRNAs in Plant Flowering. Molecular Plant 8 (3): 359–377.
Wagner D. 2009. Flower Morphogenesis: Timing Is Key. Developmental Cell 16 (5): 621–622, 2009.
Wils CR, Kaufmann K. 2017. Gene-regulatory networks controlling inflorescence and flower development in Arabidopsis thaliana. Biochimica et Biophysica Acta - Gene Regulatory Mechanisms 1860 (1): 95-105.
Woltering EJ. 2003. Postharvest Physiology | Senescence, Flowers. Encyclopedia of Applied Plant Sciences: 816–823.
Woznicki TL, Heide OM, Sønsteby A, Måge F, Remberg SF. 2019. Climate warming enhances flower formation, earliness of blooming and fruit size in plum (Prunus domestica L.) in the cool Nordic environment. Scientia Horticulturae 257: 1–7.

Most read articles by the same author(s)

1 2 > >>