Enhancement of manganese extraction in a biochar-enriched bioleaching column with a mixed culture of indigenous bacteria

##plugins.themes.bootstrap3.article.main##

Endah Retnaningrum
WAHYU WILOPO
I WAYAN WARMADA

Abstract

Abstract. Retnanimgrum E, Wilopo W, Warmada IW. 2021. Enhancement of manganese extraction in a biochar-enriched bioleaching column with a mixed culture of indigenous bacteria. Biodiversitas 22: 2949-2955. Biochar can improve manganese ore extraction during bioleaching by inducing redox reactions and providing a porous matrix for bacterial attachment. In this research, the effect of variations in biochar concentration on the performance of a bioleaching column with a mixed culture of Acidithiobacillus sp. KL3 and Bacillus niacini KB3B1 were studied comprehensively for 30 days. Addition of 0.4% biochar resulted in 89% manganese extraction. Bioleaching with biochar promoted the oxidation of sulfur and yielded high sulfate concentrations, much better pH, and excellent oxidation–reduction potential conditions. The bacteria in the mixed culture survived and adapted to the extreme column environment by releasing extracellular polymeric substance, as evidenced by the sharp increase in the content of the material in the column to 135.7 mg/g over 30 days of incubation. The synergistic effect of the bacteria in the mixed culture greatly contributed to the mechanism of manganese extraction in the column, as indicated by changes in relative bacterial abundance, which is related to bacterial community succession during bioleaching. The relative abundance of B. niacini KB3B1 gradually increased and peaked at 30% over 9 days of measurements. By comparison, the abundance of Acidithiobacillus sp. KL3 first decreased over 9 days of bioleaching and then increased to a maximum of 80% in the final stages of the process. This finding reveals that biochar addition could enhance the mechanisms of bioleaching and improve the yield of manganese extraction.

##plugins.themes.bootstrap3.article.details##

References
Andriyanto, Wilopo W, Retnaningrum E. 2020. The Performance of a fixed-bed anaerobic bioreactor using sulfate-reducing bacterial consortium from Sikidang Crater Sediments. Indones J Chem 20 (1): 190-199. DOI: 10.22146/ijc.45164.
Anto S, Sudhakar MP, Ahamed TS, Samuel MS, Mathimani T, Brindhadevi K, Pugazhendhi A. 2021. Activation strategies for biochar to use as an efficient catalyst in various applications. Fuel 285: 119205. DOI: 10.1016/j.fuel.2020.119205.
Avdalovic J, Beskoski V, Gojgic-Cvijovic G, Mattinen ML, Stojanovi M, Zildzovic S, Vrvic MM. 2015. Microbial solubilization of phosphorus from phosphate rock by iron-oxidizing Acidithiobacillus sp. B2. Min Eng 72: 17-22. DOI: 10.1016/j.mineng.2014.12.010.
Bajkic S, Narancic T, Djokic L, Djordjevic D, Nikodinovic-Runic J, Moric I, Vasiljevic B. 2013. Microbial diversity and isolation of multiple metal-tolerant bacteria from surface and underground pits within the copper mining and smelting complex. Bor Arch Biol Sci 65: 375-386. DOI: 10.2298/ABS1301375B.
Banerjee I, Burrell B, Reed C, West AC, Banta S. 2017. Metals and minerals as a biotechnology feedstock: engineering biomining microbiology for bioenergy applications. Curr Opin Biotechnol 45:144-155. DOI: 10.1016/j.copbio.2017.03.009.
Bonsu BO, Takase M, Mantey J. 2020. Preparation of charcoal briquette from palm kernel shells: case study in Ghana. Heliyon 6: e05266. DOI: 10.1016/j.heliyon.2020.e05266.
Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 7(72): 248-54. DOI: 10.1006/abio.1976.9999.
Chang G, Huang Y, Xie J, Yang H, Liu H, Yin X, Wu C. 2016. The lignin pyrolysis composition and pyrolysis products of palm kernel shell, wheat straw, and pine sawdust. Energy Convers Manag 124: 587-597. DOI: 10.1016/j.enconman.2016.07.038.
Dan Z, Zhang Y, Cai J, Li X, Duan N, Xin B. 2016. Reductive leaching of manganese from manganese dioxide ores by bacterial-catalyzed two-ores method. Int J Miner Process 150: 24-31 DOI: 10.1016/j.minpro.2016.03.0070.
Das SK, Ghosh GK, Avasthe R. 2021. Applications of biomass derived biochar in modern science and technology. Environ Technol Innov 21: 101306. DOI: 10.1016/j.eti.2020.101306.
Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal Chem 28 (3): 350-356. DOI: 10.1021/ac60111a017.
Figueroa-Estradaa JC, Aguilar-Lópeza R, Rodríguez-Vázqueza R, Neria-González MI. 2020. Bioleaching for the extraction of metals from sulfide ores using a new chemolithoautotrophic bacterium. Hydrometallurgy 197: 105445. DOI: 10.1016/j.hydromet.2020.105445.
Gupta P, Diwan B. 2017. Bacterial exopolysaccharide mediated heavy metal removal: A review on biosynthesis, mechanism and remediation strategies. Biotechnol Rep 13: 58-71. DOI: 10.1016/j.btre.2016.12.006.
Gonzáleza E, Rodríguez JM, Muñoz JA, Blázquez ML, Ballester A, González F. 2018. The contribution of Acidiphilium cryptum to the dissolution of low-grade manganese ores. Hydrometallurgy 175: 312-318 DOI: 10.1016/j.hydromet.2017.12.008.
Yang H, Chen Z, Chen W, Chen Y, Wang X, Chen H. 2020. Role of porous structure and active O-containing groups of activated biochar catalyst during biomass catalytic pyrolysis. Energy 210: 118646. DOI: 10.1016/j.energy.2020.118646.
Hao X, Liang Y, Yin H, Ma L, Xiao Y, Liu Y, Qiu G, Liu X. 2016. The effect of potential heap construction methods on column bioleaching of copper flotation tailings containing high levels of fines by mixed cultures. Miner Eng 98: 279-285. DOI: 10.1016/j.mineng.2016.07.015.
Hu W, Feng S, Tong Y, Zhang H, Yang H. 2020. Adaptive defensive mechanism of bioleaching microorganisms under extremely environmental acid stress: Advances and perspectives. Biotechnol Adv 42: 107580. DOI: 10.1016/j.biotechadv.2020.107580.
Hubau A, Minier M, Chagnes A, Joulian C, Pereza C, Guezennec A. 2018. Continuous production of a biogenic ferric iron lixiviant for the bioleaching of printed circuit boards (PCBs). Hydrometallurgy 180: 180-191. DOI: 10.1016/j.hydromet.2018.07.001.
Ilyas S, Lee J. 2014. Biometallurgical recovery of metals from waste electrical and electronic equipment: a review. Chem Bio Eng Reviews 1 (4). DOI: 10.1002/cben.201400001.
Jia Y, Tan Q, Sun H, Zhang Y, Gao H, Ruan R. 2019. Sulfide mineral dissolution microbes: Community structure and function in industrial bioleaching heaps. Green Energy Environ 4 (1): 29-37. DOI: 10.1016/j.gee.2018.04.001.
Johnson DB. 2014. Biomining-biotechnologies for extracting and recovering metals from ores and waste materials. Curr Opin Biotechnol 30: 24-31. DOI: 10.1016/j.copbio.2014.04.008.
Kadivar S, Pourhossein F, Mousavi SM. 2021. Recovery of valuable metals from spent mobile phone printed circuit boards using biochar in indirect bioleaching. J Environ Manage 280: 111642. DOI: 10.1016/j.jenvman.2020.111642.
Kaksonen AH, Deng X, Bohu T, Zea L, Khaleque HN, Gumulya Y, Boxall NJ, Morris C, Cheng KY. 2020. Prospective directions for biohydrometallurgy. Hydrometallurgy 195: 105376. DOI: 10.1016/j.hydromet.2020.105376
Khan A, Khan S, Lei M, Alam M, Khan MA, Khan A. 2020. Biochar characteristics, applications and importance in health risk reduction through metal immobilization. Environ Technol Innov 20: 101121. DOI: 10.1016/j.eti.2020.101121.
Khayatian G, Moradi M, Hassanpoor S. 2018. MnO2/3MgO nanocomposite for preconcentration and determination of trace copper and lead in food and water by flame atomic absorption spectrometry. J Anal Chem 73: 470-478. DOI: 10.1134/S1061934818050088.
Lan J, Sun Y, Du Y, Du D, Zhang TC, Li J. 2020. Environmentally-friendly bioleaching of manganese from pyrolusite: Performance and mechanisms. J Clean Prod 249: 119354. DOI: 10.1016/j.jclepro.2019.119354.
Lu Y, Xu Z. 2016. Precious metals recovery from waste printed circuit boards: A review for current status and perspective. Resour Conserv Recy 113: 28-39. DOI: 10.1016/j.resconrec.2016.05.007.
Ma Z, Yang Y, Ma Q, Zhou H, Luo X, Liu X, Wang S. 2017. Evolution of the chemical composition, functional group, pore structure and crystallographic structure of bio-char from palm kernel shell pyrolysis under different temperatures. J Anal Appl Pyrol 127: 350-359. DOI: 10.1016/j.jaap.2017.07.015.
Mahmoud A, Cezac P, Hoadley AFA, Contamine F, D'Hugues P. 2017. A review of sulfide minerals microbially assisted leaching in stirred tank reactors. Int Biodeterior Biodegradation 119: 118-146. DOI: 10.1016/j.ibiod.2016.09.015.
Newsome L, Arguedas AS, Coker VS, Boothman C, Lloyd JR. 2020. Manganese and cobalt redox cycling in laterites; Biogeochemical and bioprocessing implications. Chem Geol 531: 119330. DOI: 10.1016/j.chemgeo.2019.119330
Panda S, Akcil A, Mishra S, Erust C. 2017. Synergistic effect of biogenic Fe3+ coupled to S0 oxidation on simultaneous bioleaching of Cu, Co, Zn and As from hazardous pyrite ash waste. J Hazard Mater 325: 59-70. DOI: 10.1016/j.jhazmat.2016.11.050
Pattanaik A, Sukla LB, Pradhan D, Krishna Samal DPK. 2020. Microbial mechanism of metal sulfide dissolution. Mater Today Proc 30: 326-331. DOI: 10.1016/j.matpr.2020.01.615.
Prasidya DA, Wilopo W, Warmada IW, Retnaningrum E. 2019. Optimization of manganese bioleaching activity and molecular characterization of indigenous heterotrophic bacteria isolated from the sulfuric area. Biodiversitas 20(7): 1904-1909. DOI: 10.13057/biodiv/d200716.
Retnaningrum E, Wilopo W. 2016. Performance and bacterial composition of anodic biofilms in microbial fuel cell using dairy wastewater. AIP Conf Proc 1744 (1): 020018. DOI: 10.1063/1.4953492.
Retnaningrum E, Wilopo W. 2017. Removal of sulphate and manganese on synthetic wastewater in sulphate reducing bioreactor using Indonesian natural zeolite. Indones J Chem 17 (2): 203-210 DOI: 10.22146/ijc.22710.
Retnaningrum E, Wilopo W. 2019. Pyrolusite bioleaching by an indigenous Acidithiobacillus sp. KL3 isolated from an Indonesian sulfurous river sediment. Indonesia J Chem 19(3): 712-719. DOI: 10.22146/ijc.38898.
Shiers DW, Collinson DM, Watling HR. 2016. Life in heaps: A review of microbial responses to variable acidity in sulphide mineral bioleaching heaps for metal extraction. Res Microbiol 167 (7): 576-586. DOI: 10.1016/j.resmic.2016.05.007.
Wang S, Yue Z, Yan W, Chen L, Mahadevan GD, Feng Z. 2016. Enhanced bioleaching efficiency of metals from E-wastes driven by biochar. J Hazard Mater 320: 393-400. DOI: 10.1016/j.jhazmat.2016.08.054.
Wang J, Tian B, Bao Y, Qian C, Yang Y, Niu T, Xin B. 2018. Functional exploration of extracellular polymeric substances (EPS) in the bioleaching of obsolete electric vehicle LiNixCoyMn1-x-yO2 Li-ion batteries. J Hazard Mater 354: 250-257. DOI: 10.1016/j.jhazmat.2018.05.009.
Wang Y, Chen X, Zhou H. 2018. Relationships between galvanic interaction, copper extraction and community dynamics during bioleaching of chalcopyrite by a moderately thermophilic culture. Bioresour Technol 265: 581-585.
Xin B, Li T, Li X, Dan Z, Xu F, Duan N, Zhang Y, Zhang H. 2015. Reductive dissolution of manganese from manganese dioxide ore by autotrophic mixed culture under aerobic conditions. J Clean Prod 92: 54-64. DOI: 10.1016/j.jclepro.2014.12.060.
Xu S, Adhikari D, Huang R, Zhang H, Tang Y, Roden EE, Yang Y. 2016. Biochar facilitated microbial reduction of hematite. Environ Sci Technol 2389-2395. DOI: 10.1021/acs.est.5b05517.
Yin S, Chen W, Chen X, Wang L. 2019. Bacterial-mediated recovery of copper from low-grade copper sulphide using acid-processed rice straw. Bioresour Technol 288: 121605. DOI: 10.1016/j.biortech.2019.121605.
Zhang RY, Neu TR, Bellenberg S, Kuhlicke U, Sand W, Vera M. 2015. Use of lectins to in situ visualize glycoconjugates of extracellular polymeric substances in acidophilic archaeal biofilms. Microb Biotechnol 8 (3): 448-461. DOI.10.1111/1751-7915.12188.
Zhang L, Donga H, Liu Y, Bian L, Wang X, Zhou Z, Huang Y. 2018. Bioleaching of rare earth elements from bastnaesite-bearing rock by actinobacteria. Chem Geol 483: 544-557. DOI: 10.1016/j.chemgeo.2018.03.023.
Zhao Z, Zhang Y, Holmes DE, Dang Y, Woodard TL, Nevin KP, Lovley DR. 2016. Potential enhancement of direct interspecies electron transfer for syntrophic metabolism of propionate and butyrate with biochar in up-flow anaerobic sludge blanket reactors. Bioresour Technol 209: 148-156. DOI: 10.1016/j.biortech.2016.03.005.
Zhou W, Wu J, Zeng W, Wang Y, Guo N, Zhang L, Wan L, Zhou H. 2019. Optimization of mixed cultivation of the moderate thermophilic bioleaching microorganisms for high cell density using statistical methodology. Geomicrobiol J 36 (3): 224-231. DOI: 10.1080/01490451.2018.1536176.
Zhu J, Zhang J, Li Q, Han T, Hu Y, Liu X, Qin W, Chai L, Qiu G. 2014. Trans Nonferrous Met Soc China 24 (9): 2969-2975. DOI: 10.1016/S1003-6326(14)63433-6.

Most read articles by the same author(s)