Heavy metals accumulation in Nerium oleander leaves across urban areas in Setif region, Algeria

##plugins.themes.bootstrap3.article.main##

MOHAMED AMINE KOUCIM
AMINA BELGUIDOUM
TAKIA LOGRADA
MESSAOUD RAMDANI

Abstract

Abstract. Koucim MA, Belguidoum A, Lograda T, Ramdani M. 2021. Heavy metals accumulation in Nerium oleander leaves across urban areas in Setif region, Algeria. Biodiversitas 22: 3083-3091. Pollution by Metallic trace elements (MTE) has become one of the most serious environmental problems resulting from human activity. Plants, which are the base of the food chain, can take up MTE from the soil solution; hyper-accumulators can store high levels of heavy metals in their aerial parts at high concentrations. These plants can be used in phytoremediation. This study aimed to investigate the accumulation of MTE in the leaves of Nerium oleander to monitor environmental pollution of several areas in the province of Setif, Algeria. The samples of N. oleander leaves were collected from 20 urban areas in Setif Province. The concentrations of seven metallic trace elements (Cd, Mn, Pb, Sb, Cu, Bi and Fe) were determined using Flame Atomic Absorption Spectrophotometry (AASF). The results show that the concentrations of heavy metals in the leaves of N. oleander, in general, were very high, far exceeding the certified standard ranges. The order of MTE in the leaves was found as follows: Mn> Sb> Bi> Pb> Fe> Cu> Cd. Our findings indicate that although N. oleander showed a significant capacity to accumulate MTE, the urban areas of Setif province were highly polluted by heavy metals. The presence of metal ions in the aerial parts of the plant indicates that N. oleander is a hyper-accumulator of metals with tolerance to Mn, Sb, and Pb, and can be used as a bio-monitor. This opens up prospects for its application for soil phytoremediation.

##plugins.themes.bootstrap3.article.details##

References
Abbasi A, Sajid A, Haq N, Rahman S, Misbah ZT, Sanober G, Kazi AG. 2014. Agricultural pollution: an emerging issue. In Improvement of crops in the era of climatic changes (pp. 347-387). Springer, New York, NY(pp. 347-387).? https://doi.org/10.1007/978-1-4614-8830-9_13
Aksu A. 2015. Sources of metal pollution in the urban atmosphere (A case study: Tuzla, Istanbul). Journal of Environmental Health Science and Engineering 13(1): 1-10.? https://doi.org/10.1186/s40201-015-0224-9
Al-Khlaifat AL, Al-Khashman OA. 2007. Atmospheric heavy metal pollution in Aqaba city, Jordan, using Phoenix dactylifera L. leaves. Atmospheric Environment 41(39): 8891-8897.? https://doi.org/10.1016/j.atmosenv.2007.08.028
Antonucci A, Vitali M, Avino P, Manigrasso M, Protano C. 2016. Sensitive multiresidue method by HS-SPME/GC-MS for 10 volatile organic compounds in urine matrix: a new tool for bio monitoring studies on children. Anal. Bioanal.Chem 408: 5789-5800. doi.org/10.1007/s00216-016-9682-x
Ashraf S, Ali Q, Zahir ZA, Ashraf S, Asghar HN. 2019. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicology and environmental safety 174: 714-727.? https://doi.org/10.1016/j.ecoenv.2019.02.068
Bar?? Özel H, Ucun Özel H, Varol T. 2015. Using Leaves of Oriental Plane (Platanus orientalis L.) to Determine the Effects of Heavy Metal Pollution Caused by Vehicles. Polish Journal of Environmental Studies 24(6): 2569-2575.? DOI:10.15244/PJOES/59072
Belguidoum A, Lograda T, Ramdani M. 2020. Heavy metals accumulation in Hertia cheirifolia along the highway in Setif region, Algeria. Biodiversitas Journal of Biological Diversity 21(6): 2786–2793. ?DOI: 10.13057/biodiv/d210655
Belguidoum A, Lograda T, Ramdani M. 2021. Ability of metal trace elements accumulation by Lichens, Xanthoria parietina and Ramalina farinacea, in Megres area (Setif, Algeria). Sciendo 8 (1): 91–108. DOI: 10.2478/asn-2021-0008
Berlizov AN., Blum OB., Filby RH., Malyuk IA, Tryshyn VV. 2007. Testing applicability of black poplar (Populus nigra L.) bark to heavy metal air pollution monitoring in urban and industrial regions. Science of the Total Environment, 372(2-3): 693-706.? https://doi.org/10.1016/j.scitotenv.2006.10.029
Chen B, Stein AF, Castell N, Gonzalez-Castanedo Y, de la Campa AS, De La Rosa JD. 2016. Modeling and evaluation of urban pollution events of atmospheric heavy metals from a large Cu-smelter. Science of the Total Environment 539: 17-25.? https://doi.org/10.1016/j.scitotenv.2015.08.117
De Silva S, Ball AS, Huynh T, Reichman SM. 2016. Metal accumulation in roadside soil in Melbourne, Australia: effect of road age, traffic density and vehicular speed. Environmental Pollution 208: 102-109.? https://doi.org/10.1016/j.envpol.2015.09.032
Di Lonardo S, Capuana M, Arnetoli M, Gabbrielli R, Gonnelli, C. 2011. Exploring the metal phytoremediation potential of three Populus alba L. clones using an in vitro screening. Environmental Science and Pollution Research: 18(1): 82-90.? https://doi.org/10.1007/s11356-010-0354-7
Dongarrà G, Sabatino G, Triscari M, Varrica D. 2003. The effects of anthropogenic particulate emissions on roadway dust and Nerium oleander leaves in Messina (Sicily, Italy). Journal of Environmental Monitoring 5(5): 766-773.? https://doi.org/10.1039/B304461K
Elloumi N, Belhaj D, Mseddi S, Zouari M, Abdallah FB, Woodward S, Kallel M. 2017. Response of Nerium oleander to phosphogypsum amendment and its potential use for phytoremediation. Ecological Engineering 99: 164-171.? https://doi.org/10.1016/j.ecoleng.2016.11.053
Espinosa Fernández AJ, Oliva SR (2006). The composition and relationships between trace element levels in inhalable atmospheric particles (PM10) and in leaves of Nerium oleander L. and Lantana camara L. Chemosphere 62, 1665–1672. https://doi.org/10.1016/j.chemosphere.2005.06.038
Farahat E, Linderholm, HW. 2015. The effect of long-term wastewater irrigation on accumulation and transfer of heavy metals in Cupressus sempervirens leaves and adjacent soils. Science of the Total Environment 512: 1-7.? https://doi.org/10.1016/j.scitotenv.2015.01.032
Fioravanti S, Cesaroni G, Badaloni C, Michelozzi P, Forastiere F, Porta D. 2018. Traffic-related air pollution and childhood obesity in an Italian birth cohort. Environmental Research 160: 479-486. ?doi: 10.1016/j.envres.2017.10.003.
González-Castanedo Y, Moreno T, Fernández-Camacho R, de la Campa AM.S, Alastuey A, Querol, X, Rosa J. 2014. Size distribution and chemical composition of particulate matter stack emissions in and around a copper smelter. Atmospheric Environment 98: 271-282.? https://doi.org/10.1016/j.atmosenv.2014.08.057
Hanedar A. 2015. Assessment of airborne heavy metal pollution in soil and lichen in the Meric-Ergene Basin, Turkey. Environmental technology 36(20): 2588-2602.? DOI: 10.1080/09593330.2015.1039071
Hankey S, Marshall JD. 2017. Urban form, air pollution, and health. Current environmental health reports 4(4): 491-503. ?DOI: 10.1007/s40572-017-0167-7
Hodomihou NR, Feder F, Masse D, Agbossou EK, Amadji GL, Ndour-Badiane Y, Doelsch E. 2016. Diagnostic de contamination des agrosystèmes périurbains de Dakar par les éléments traces métalliques.? Biotechnologie, Agronomie, Société et Environnement 20 (3) : 397-407.https://doi.org/10.25518/1780-4507.13035
Hu H, Jin Q, Kavan P. 2014. A study of heavy metal pollution in China: Current status, pollution-control policies and countermeasures. Sustainability 6(9): 5820-5838.? https://doi.org/10.3390/su6095820
Ibrahim N, El Afandi G. 2020. Evaluation of the phytoremediation uptake model for predicting heavy metals (Pb, Cd, and Zn) from the soil using Nerium oleander L. Environmental Science and Pollution Research 27(30): 38120-38133.? https://doi.org/10.1007/s11356-020-09657-5
Iqbal M, Iqbal N, Bhatti IA, Ahmad N, Zahid M. 2016. Response surface methodology application in optimization of cadmium adsorption by shoe waste: a good option of waste mitigation by waste. Ecological engineering 88: 265-275.? https://doi.org/10.1016/j.ecoleng.2015.12.041
Issah AS, Djangbedja M, Mawussi G, Gnandi K, Tchamie TTK. 2016. Evaluation de la pollution des sols de la carriere de calcaire de tabligbo (sud-est togo) par les metaux lourds toxiques. Cahiers du CBRST (10): 1-18.? https://hal.archives-ouvertes.fr/hal-01832657/
Kabata-Pendias A, Pendias H. 2001. Trace elements in soils and plants, 3rd Ed. CRC Press. Boca Raton, FL, USA.? http://base.dnsgb.com.ua/files/book/Agriculture/Soil/Trace-Elements-in-Soils-and-Plants.pdf
Lodenius M, Kiiskinen J, Tulisalo E. 2010. Metal levels in an epiphytic lichen as indicators of air quality in a suburb of Helsinki, Finland. Boreal Environment Research 15(4): 446–452. https://www.researchgate.net/publication/47930270_
Lograda T, Harkati Z, Adel K, Ramdani M. 2016. Heavy metals accumulation in species from mine Karzet Youcef (Algeria). Word J Pharmaceut Res 5(11): 250-260.? https://1library.net/document/q05njexy-heavy-metals-accumulation-species-karzet-youcef-algeria.html
Maher BA, Moore C, Matzka J. 2008. Spatial variation in vehicle-derived metal pollution identified by magnetic and elemental analysis of roadside tree leaves. Atmospheric environment 42(2): 364-373.? https://doi.org/10.1016/j.atmosenv.2007.09.013
Midhat L, Ouazzani N, Hejjaj A, Ouhammou A, Mandi L. 2019. Accumulation of heavy metals in metallophytes from three mining sites (Southern Centre Morocco) and evaluation of their phytoremediation potential. Ecotoxicology and Environmental Safety 169: 150-160.? https://doi.org/10.1016/j.ecoenv.2018.11.009
Mingorance MD, Oliva SR. 2006. Heavy metals content in N. oleander leaves as urban pollution assessment. Environmental monitoring and assessment 119(1): 57-68. https://doi.org/10.1007/s10661-005-9004-9
Mingorance MD, Valdes B, Oliva SR. 2007. Strategies of heavy metal uptake by plants growing under industrial emissions. Environment International, 33(4): 514-520.? doi:10.1016/j.envint.2007.01.005
Mohamed M, Mokhtar A, Dahbia Z, Mohamed AH. 2013. Decontamination of Agricultural Soil Polluted with Lead using the Common Barley (Hordium vulgare). Arab Gulf Journal of Scientific Research 31(1): 23-35. https://web.b.ebscohost.com/abstract?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl.
Morel JL. 2002. La phytoremédiation des sols contaminés. L'Actualité Chimique, (special) 1: 63-66.? https://hal.inrae.fr/hal-02676823/document
Morel JL. 2021. Chapitre 8: Phytoremédiation des sols contaminés: des plantes pour guérir les sols. In La chimie et la nature. EDP Sciences. (pp. 157-184). https://doi.org/10.1051/978-2-7598-0859-5-011
Nguyen-Van T, Ozaki A, Nguyen Tho H, Nguyen Duc A, Tran Thi Y, Kurosawa K. 2016. Arsenic and heavy metal contamination in soils under different land use in an estuary in Northern Vietnam. International journal of environmental research and public health 13(11): 1091.? DOI:10.3390/ijerph13111091
Odabasi M, Bayram A, Elbir T, Seyfioglu R, Dumanoglu Y, Ornektekin S. 2010. Investigation of soil concentrations of persistent organic pollutants, trace elements, and anions due to iron–steel plant emissions in an industrial region in Turkey. Water, Air, Soil Pollution 213(1): 375-388.? https://doi.org/10.1007/s11270-010-0392-2
Oumenskou H, El Baghdadi M, Barakat A, Aquit M, Ennaji W, Karroum LA, Aadraoui M. 2018. Assessment of the heavy metal contamination using GIS-based approach and pollution indices in agricultural soils from Beni Amir irrigated perimeter, Tadla plain, Morocco. Arabian Journal of Geosciences 11(22): 1-18.? https://doi.org/10.1007/s12517-018-4021-5
Pandey B, Agrawal M, Singh S. 2014. Assessment of air pollution around coal mining area: Emphasizing on spatial distributions, seasonal variations and heavy metals, using cluster and principal component analysis. Atmospheric Pollution Research 5(1): 79–86. Doi:10.5094/apr.2014.010
Parzych A, Astel A, Zdu?czyk A, Surowiec T. 2016. Evaluation of urban environment pollution based on the accumulation of macro-and trace elements in epiphytic lichens. Journal of Environmental Science and Health Part A 51(4): 297–308. ?DOI: 10.1080/10934529.2015.1109387
Pichtel J. 2016. Oil and gas production wastewater: Soil contamination and pollution prevention. Applied and Environmental Soil Science 2016.? https://doi.org/10.1155/2016/2707989
Pirintsos SA, Loppi S. 2008. Biomonitoring atmospheric pollution: the challenge of times in environmental policy on air quality. Environmental pollution151, 269-171. https://doi.org/10.1016/j.envpol.2007.06.035
Pollard AS, Williamson BJ, Taylor M, Purvis WO, Goossens M, Reis S, Osborne NJ. 2015. Integrating dispersion modelling and lichen sampling to assess harmful heavy metal pollution around the Karabash copper smelter, Russian Federation. Atmospheric Pollution Research 6(6): 939-945.? https://doi.org/10.1016/j.apr.2015.04.003
Rimondi V, Benesperi R, Beutel MW, Chiarantini L, Costagliola P, Lattanzi P, Morelli G. 2020. Monitoring of airborne mercury: comparison of different techniques in the Monte Amiata District, Southern Tuscany, Italy. International journal of environmental research and public health 17(7): 2353.? Doi:10.3390/ijerph17072353
Santos RS, Sanches FA, Leitão RG, Leitão CC, Oliveira DF, Anjos MJ, Assis JT. 2019. Multi-elemental analysis in Nerium Oleander L. leaves as a way of assessing the levels of urban air pollution by heavy metals. Applied Radiation and Isotopes 152: 18-24.? https://doi.org/10.1016/j.apradiso.2019.06.020
Song C, Sarpong CK, He J, Shen F, Zhang J, Yang G, Deng S. 2020. Accelerating phytoremediation of degraded agricultural soils utilizing rhizobacteria and endophytes: a review. Environmental Reviews 28(1): 115-127.? https://doi.org/10.1139/er-2019-0020
Stamenkovic SS, Mitrovic TL, Cvetkovic VJ, Krstic NS, Baosic R, Markovic MS, Cvijan MV. 2013. Biological indication of heavy metal pollution in the areas of Donje Vlase and Cerje (southeastern Serbia) using epiphytic lichens. Archives of Biological Sciences 5(1): 151–159.? DOI: 10.2298/ABS1301151S
Suba V, Rathika G, Kumar ER, Saravanabhavan M. 2018. Influence of Magnetic Nanoparticles on Surface Changes in CoFe2O4/ Nerium Oleander Leaf Waste Activated Carbon Nanocomposite for Water Treatment. Journal of Inorganic and Organometallic Polymers and Materials 28(5): 1706-1717.? https://doi.org/10.1007/s10904-018-0831-x
Suman J, Uhlik O, Viktorova J, Macek T. 2018. Phytoextraction of heavy metals: a promising tool for clean-up of polluted environment?. Frontiers in plant science, 9: 1476.? https://doi.org/10.3389/fpls.2018.01476
Theo MM, Victor PK, Willy LS, Dieudonné MEA. 2020. Evaluation du profil métallique et biologique de la pollution de l’air atmosphérique dans la ville province de Kinshasa, République Démocratique du Congo. IJAR 6(8): 115-123.? https://www.researchgate.net/profile/Willy-Lusasi Swana/publication/344216594_ Republique-Democratique-du-Congo.pdf
Vannucchi F, Traversari S, Raffaelli A, Francini A, Sebastiani L. 2020. Populus alba tolerates and efficiently removes caffeine and zinc excesses using an organ allocation strategy. Plant Growth Regulation 92(3): 597-606.? https://doi.org/10.1007/s10725-020-00664-7
Wei B, Yang L 2010. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchemical journal 94(2): 99-107.? https://doi.org/10.1016/j.microc.2009.09.014
Yan A, Wang Y, Tan SN, Yusof MLM., Ghosh S, Chen Z. 2020. Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Frontiers in Plant Science 11: 395.? doi: 10.3389/fpls.2020.00359
Yang A, Wang YH, Hu J, Liu XL, Li J. 2020. Evaluation and source of heavy metal pollution in surface soil of Qinghai-Tibet plateau. Huan Jing Ke Xue= Huanjing Kexue 41(2): 886-894.? https://doi: 10.13227/j.hjkx.201907195
Youssef N, Markert B, Gurbanov E, Sevnic H, Wünschmann S. 2014. Bioindication of trace metal pollution in the atmosphere of Baku city using ligustrum japonicum, olea europea, and pyracantha coccinea leaves. Journal of Environmental Engineering and Landscape Management 22(1): 14-20.? https://doi.org/10.3846/16486897.2013.804828

Most read articles by the same author(s)

1 2 > >>