Potential of marine sponge-derived fungi in the aquaculture system

##plugins.themes.bootstrap3.article.main##

MUHAMMAD SYAIFUDIEN BAHRY
OCKY KARNA RADJASA
AGUS TRIANTO

Abstract

Abstract. Bahry MS, Radjasa OK, Trianto A. 2021. Potential of marine sponge-derived fungi in the aquaculture system. Biodiversitas 22: 2883-2892. Organic waste from aquaculture is one of the triggers of disease outbreaks and a decrease in water quality that urgently needs to be resolved. Indonesia has a high diversity of sponges including their associated microorganisms that potential in the field of biotechnology. This study aimed to determine the enzymatic and anti-vibrio activity of fungi associated with marine sponges and identify potential fungi. The specimen of sponges was collected from Samalona Island, South Sulawesi, Indonesia. The enzymatic and anti-vibrio assay was conducted by using the plug method and the activity was determined by a clear zone around the fungal isolates. Fungal identification was carried out molecularly using universal primers ITS1 and ITS4 and phylogenetic tree analysis. The fungal isolates were screened for the extracellular enzyme activity (amylase, cellulase, protease) and anti-vibrio activity against Vibrio parahaemolyticus, V. harveyi, and V. vulnificus). A total of three fungal isolates have been isolated from the sponge Monanchora sp. Isolate SL 3 SP 3.3 had potential enzymatic activities with Enzymatic Indeks (EI) 3.95±0.17 on amylase, 3.75±0.36 on cellulase, 5.38±0.30 on protease. The highest anti-vibrio activity was obtained against V. harveyi with an inhibition zone diameter of 4.82 ±0.37 mm. The results of fungal identification showed that isolate SL3SP3.3 had a sequence length of 638 bp and was closely related to Trichoderma reesei a.k.a Hypocrea jecorina with a similarity value of 99.69%.

##plugins.themes.bootstrap3.article.details##

References
Ahmed ME. 2018. Extraction and purification of protease from Aspergillus niger isolation. Pharmacy & Pharmacology International Journal 6:96–99. DOI: 10.15406/ppij.2018.06.00162.
Alvarez-Navarrete M, Reyna López GE, Flores-García A, López Gómez R, Martínez-Pacheco MM. 2015. Selection and molecular identification of fungal isolates that produce xylanolytic enzymes. Genetics and Molecular Research 14:8100–8116. DOI: 10.4238/2015.July.17.19.
Arevabini C, Crivelenti YD, De Abreu MH, Bitencourt TA, Santos MFC, Berlinck RGS, Hajdu E, Beleboni RO, Fachin AL, Marins M. 2014. Antifungal activity of metabolites from the marine sponges Amphimedon sp. and Monanchora arbuscula against Aspergillus flavus strains isolated from peanuts (Arachis hypogaea). Natural Product Communications 9:33–36. DOI: 10.1177/1934578x1400900111.
Assem H, Khalifa A, ELSalhia M. 2014. Physiological and microbiological indices as indicators of evaluating dietary fungi degraded date pits as a probiotic for cultured Nile tilapia Oreochromis niloticus fingerling and its effect on fish welfare. Egyptian Journal of Aquatic Research 40:435–441. DOI: 10.1016/j.ejar.2014.10.004.
Bahry MS, Pringgenies D, Trianto A. 2017. Molecular Identification of Marine Symbiont Bacteria of Gastropods from the Waters of the Krakal Coast Yogyakarta and Its Potential as a Multi-drug Resistant ( MDR ) Antibacterial Agent. AIP Conf. Proc 020019. DOI: 10.1063/1.4973146.
Bonugli-Santos RC, Vasconcelos MR dos S, Passarini MRZ, Vieira GAL, Lopes VCP, Mainardi PH, Santos JA dos, Duarte L de A, Otero IVR, Yoshida AM da S, Feitosa VA, Pessoa A, Sette LD. 2015. Marine-derived fungi: Diversity of enzymes and biotechnological applications. Frontiers in Microbiology 6. DOI: 10.3389/fmicb.2015.00269.
Calcinai B, Bastari A, Bavestrello G, Bertolino M, Horcajadas SB, Pansini M, Makapedua DM, Cerrano C. 2017. Demosponge diversity from North Sulawesi, with the description of six new species. ZooKeys 2017:105–150. DOI: 10.3897/zookeys.680.12135.
Carpa R, Cândea A, Remizovschi A, Barbu-Tudoran L, Maior MC. 2018. Cellulase production and morphology of Trichoderma reesei in different experimental conditions. Studia Universitatis Babe?-Bolyai Biologia 63:115–129. DOI: 10.24193/subbbiol.2018.2.09.
Colonia BSO, Junior AFC. 2014. Screening and detection of extracellular cellulases ( endo- and exo-glucanases ) secreted by filamentous fungi isolated from soils using rapid tests with chromogenic dyes. African Journal of Biotechnology 13:4694–4701. DOI: 10.5897/AJB2014.14221.
Coronado-Ruiz C, Avendaño R, Escudero-Leyva E, Conejo-Barboza G, Chaverri P, Chavarría M. 2018. Two new cellulolytic fungal species isolated from a 19th-century art collection. Scientific Reports 8:1–9. DOI: 10.1038/s41598-018-24934-7.
Cristianawati O, Sabdaningsih A, Becking LE, Khoeri MM, Nuryadi H, Sabdono A, Trianto A, Radjasa OK. 2019. Biological activity of sponge-associated fungi from Karimunjawa islands, Indonesia against pathogenic streptococcus pneumoniae. Biodiversitas 20:2143–2150. DOI: 10.13057/biodiv/d200807.
Daranagama ND, Shioya K, Yuki M, Sato H, Ohtaki Y, Suzuki Y, Shida Y, Ogasawara W. 2019. Proteolytic analysis of Trichoderma reesei in celluase-inducing condition reveals a role for trichodermapepsin (TrAsP) in cellulase production. Journal of Industrial Microbiology and Biotechnology 46:831–842. DOI: 10.1007/s10295-019-02155-9.
Dermawan AM, Julianti E, Putra MY, Karim F. 2019. Identification and Evaluation of Antibacterial Compounds from the Vibrio sp . associated with the Ascidian Pycnoclavella diminuta. Pharmaceutical Sciences and Research 6:142–148.
Dienes D, Börjesson J, Hägglund P, Tjerneld F, Lidén G, Réczey K, Stålbrand H. 2007. Identification of a trypsin-like serine protease from Trichoderma reesei QM9414. Enzyme and Microbial Technology 40:1087–1094. DOI: 10.1016/j.enzmictec.2006.08.013.
Druzhinina IS, Kubicek CP. 2017. Genetic engineering of Trichoderma reesei cellulases and their production. Microbial Biotechnology 10:1485–1499. DOI: 10.1111/1751-7915.12726.
Dyshlovoy SA, Tabakmakher KM, Hauschild J, Shchekaleva RK, Otte K, Guzii AG, Makarieva TN, Kudryashova EK, Fedorov SN, Shubina LK, Bokemeyer C, Honecker F, Stonik VA, Von Amsberg G. 2016. Guanidine alkaloids from the marine sponge Monanchora pulchra show cytotoxic properties and prevent EGF-induced neoplastic transformation in vitro. Marine Drugs 14:1–17. DOI: 10.3390/md14070133.
El-Demerdash A, Moriou C, Martin M-T, Rodrigues-stien ADS, Petek S, Demoy-schneider M, Hall K, Hooper JNA, Al-mourabit A. 2016. Cytotoxic Guanidine Alkaloids from a French Polynesian Monanchora n. sp. Sponge. Journal of Natural Products 79:1929–1937. DOI: 10.1021/acs.jnatprod.6b00168.
Etikan I, Musa SA, Alkassim RS. 2016. Comparison of Convenience Sampling and Purposive Sampling. American Journal of Theoretical and Applied Statistics 5:1–4. DOI: 10.11648/j.ajtas.20160501.11.
FAO. 2018. The State of World Fisheries and Aquaculture- Meeting the sustainable development goals. Rome: Food and Agriculture Organization of the United Nations. DOI: 10.1111/fog.12466.
Gloeckner V, Wehrl M, Moitinho-Silva L, Gernert C, Hentschel U, Schupp P, Pawlik JR, Lindquist NL, Erpenbeck D, Wörheide G, Wörheide G. 2014. The HMA-LMA dichotomy revisited: An electron microscopical survey of 56 sponge species. Biological Bulletin 227:78–88. DOI: 10.1086/BBLv227n1p78.
Gogineni V, Oh J, Waters AL, Kelly M, Stone R, Hamann MT. 2020. Monanchocidin A From Subarctic Sponges of the Genus Monanchora and Their Promising Selectivity Against Melanoma in vitro. Frontiers in Marine Science 7:1–11. DOI: 10.3389/fmars.2020.00058.
Hadi TA. 2011. Species Diversity of Sponges on Coral Reefs Ecosystem in Pulau Pari Group, Seribu Islands. Oseanologi dan Limnologi di Indonesia 37:383–396.
Handayani D, Ornando R, Rustini. 2016. Antimicrobial activity screening of symbiotic fungi from marine sponge Petrosia nigrans collected from south coast of West Sumatera, Indonesia. International Journal of Pharmacognosy and Phytochemical Research 8:623–626.
Hooper JNA, Van Soest RWM. 2002. Systema Porifera?: A Guide to the Classification of Sponges. New York: Kluwer Academic / Plenum Publishers.
Hua HM, Peng J, Dunbar DC, Schinazi RF, de Castro Andrews AG, Cuevas C, Garcia-Fernandez LF, Kelly M, Hamann MT. 2007. Batzelladine alkaloids from the caribbean sponge Monanchora unguifera and the significant activities against HIV-1 and AIDS opportunistic infectious pathogens. Tetrahedron 63:11179–11188. DOI: 10.1016/j.tet.2007.08.005.
Indraningrat AAG, Smidt H, Sipkema D. 2016. Bioprospecting sponge-associated microbes for antimicrobial compounds. Marine Drugs 14:1–66. DOI: 10.3390/md14050087.
Kaewkrajay C, Putchakarn S, Limtong S. 2021. Cultivable yeasts associated with marine sponges in the Gulf of Thailand, South China Sea. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology 114:253–274. DOI: 10.1007/s10482-021-01518-6.
Kamath P, Subrahmanyam VM, Rao J, Raj P. 2010. Optimization of cultural conditions for protease production by a fungal species. Indian Journal of Pharmaceutical Sciences 72:161–166. DOI: 10.4103/0250-474X.65017.
Kawaroe M, Setyaningsih D, Negara BFS, Augustine D. 2015. Potential Marine Fungi Hypocreaceae sp. as Agarase Enzyme to Hydrolyze Macroalgae Gelidium latifolium (Potensi Jamur Hypocreaceae sp. sebagai Enzim Agarase untuk menghidrolisis Makroalga Gelidium latifolium). ILMU KELAUTAN: Indonesian Journal of Marine Sciences 20:45. DOI: 10.14710/ik.ijms.20.1.45-51.
Khokhar I, Haider MS, Mushtaq S, Mukhtar I. 2012. isolation and Screening of Highly Cellulolytic Filamentous Fungi. Journal of Applied Sciences and Environmental Management 16:223–226.
Kiran GS, Sekar S, Ramasamy P, Thinesh T, Hassan S, Lipton AN, Ninawe AS, Selvin J. 2018. Marine sponge microbial association: Towards disclosing unique symbiotic interactions. Marine Environmental Research 140:169–179. DOI: 10.1016/j.marenvres.2018.04.017.
Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular biology and evolution 33:1870–1874. DOI: 10.1093/molbev/msw054.
Kurniawan LA, Arief M, Manan A, Nindarwi DD. 2019. PENGARUH PEMBERIAN PROBIOTIK BERBEDA PADA PAKAN TERHADAP RETENSI PROTEIN DAN RETENSI LEMAK UDANG VANAME (Litopenaeus vannamei). Journal of Aquaculture and Fish Health 6:32. DOI: 10.20473/jafh.v6i1.11272.
Kusumaningrum HP, Zainuri M. 2015. Detection of Bacteria and Fungi Associated with Penaeus Monodon Postlarvae Mortality. Procedia Environmental Sciences 23:329–337. DOI: 10.1016/j.proenv.2015.01.048.
Liu Y, Zachow C, Raaijmakers JM, De Bruijn I. 2016. Elucidating the diversity of aquatic microdochium and trichoderma species and their activity against the fish pathogen Saprolegnia diclina. International Journal of Molecular Sciences 17:1–15. DOI: 10.3390/ijms17010140.
Lübeck M, Lübeck PS. 2018. Isolation and screening of cellulolytic filamentous fungi. Journal of Applied Sciences and Environmental Management 15:203–206. DOI: 10.1007/978-1-4939-7877-9_3.
Lusi S, Sari A, Setyaningsih R, Fitriatul N, Wibowo A. 2017. Isolation and screening of cellulolytic fungi from Salacca zalacca leaf litter. Biodiversitas, Journal of Biological Diversity 18:1282–1288. DOI: 10.13057/biodiv/d180355.
Maitig AMA, Alhoot MAM, Tiwari K. 2018. Isolation and screening of extracellular protease enzyme from fungal isolates of soil. Journal of Pure and Applied Microbiology 12:2059–2067. DOI: 10.22207/JPAM.12.4.42.
Muller EM, Raymundo LJ, Willis BL, Haapkylä J, Yusuf S, Wilson JR, Harvell DC. 2014. Coral Health and Disease in the Spermonde Archipelago and Wakatobi , Sulawesi Coral Health and Disease in the Spermonde Archipelago and Wakatobi , Sulawesi.
Ogbonna CN, Okpokwu NM, Okafor CU, Onyia CE. 2014. Isolation and screening of amylase producing fungi obtained from garri processing site. International Journal of Biotechnology and Food Science 2:88–93.
Olmos J, Ochoa L, Paniagua-Michel J, Contreras R. 2011. Functional feed assessment on Litopenaeus vannamei using 100% fish meal replacement by soybean meal, high levels of complex carbohydrates and Bacillus probiotic strains. Marine Drugs 9:1119–1132. DOI: 10.3390/md9061119.
Pakula TM, Nygren H, Barth D, Heinonen M, Castillo S, Penttilä M, Arvas M. 2016. Genome wide analysis of protein production load in Trichoderma reesei. Biotechnology for Biofuels 9:1–26. DOI: 10.1186/s13068-016-0547-5.
Panno L, Bruno M, Voyron S, Anastasi A, Gnavi G, Miserere L, Varese GC. 2013. Diversity, ecological role and potential biotechnological applications of marine fungi associated to the seagrass Posidonia oceanica. New Biotechnology 30:686–694. DOI: 10.1016/j.nbt.2013.01.010.
Peciulyte A, Anasontzis GE, Karlström K, Larsson PT, Olsson L. 2014. Morphology and enzyme production of Trichoderma reesei Rut C-30 are affected by the physical and structural characteristics of cellulosic substrates. Fungal Genetics and Biology 72:64–72. DOI: 10.1016/j.fgb.2014.07.011.
Proksch P, Ebel R, Edrada RA, Wray V, Steube K. 2003. Bioactive natural products from marine invertebrates and associated fungi. Marine Molecular Biotechnology 37:117–142. DOI: 10.1007/978-3-642-55519-0_5.
Rachmawati D, Hutabarat J, Dewi EN, Windarto S. 2020. Supplementation of Papain in Feed on Growth Performance, Efficiency of Feed Utilization, and Survival Rate of Whiteleg Shrimp (Litopenaeus vannamei). Journal of Marine Research 9:215–222.
Radjasa OK, Kencana DS, Sabdono A, Hutagalung RA, Lestari ES. 2009. Antibacterial activity of marine bacteria associated with sponge Aaptos sp. against Multi Drugs Resistant (MDR) strains. Jurnal Matematika & Sains 12:147–152.
Radjasa OK, Vaske YM, Navarro G, Vervoort HC, Tenney K, Linington RG, Crews P. 2011. Highlights of marine invertebrate-derived biosynthetic products: Their biomedical potential and possible production by microbial associants. Bioorganic and Medicinal Chemistry 19:6658–6674. DOI: 10.1016/j.bmc.2011.07.017.
Rehman SU, Yang LJ, Zhang YH, Wu JS, Shi T, Haider W, Shao CL, Wang CY. 2020. Sorbicillinoid Derivatives From Sponge-Derived Fungus Trichoderma reesei (HN-2016-018). Frontiers in Microbiology 11:1–10. DOI: 10.3389/fmicb.2020.01334.
Rengasamy S, Thangaprakasam U. 2018. Isolation, Screening and Determination of ?-Amylase Activity From Marine Streptomyces Species. International Journal of Pharmacy and Pharmaceutical Sciences 10:122. DOI: 10.22159/ijpps.2018v10i4.24447.
Rodriguez-Iglesias A, Schmoll M. 2019. Protein phosphatases regulate growth, development, cellulases and secondary metabolism in Trichoderma reesei. Scientific Reports 9:1–17. DOI: 10.1038/s41598-019-47421-z.
Sabdaningsih A, Cristianawati O, Sibero MT, Aini M, Radjasa OK, Sabdono A, Trianto A. 2019. Anti MDR acinetobacter baumannii of the sponges-associated fungi from Karimunjawa national park. AACL Bioflux 12:1970–1983.
Sabdaningsih A, Cristianawati O, Sibero MT, Nuryadi H, Radjasa OK, Sabdono A, Trianto A. 2017. Screening Antibacterial Agent from Crude Extract of Marine-Derived Fungi Associated with Soft Corals against MDR-Staphylococcus haemolyticus. IOP Conference Series: Earth and Environmental Science 55. DOI: 10.1088/1742-6596/755/1/011001.
Santos MFC, Harper PM, Williams DE, Mesquita JT, Pinto ÉG, Da Costa-Silva TA, Hajdu E, Ferreira AG, Santos RA, Murphy PJ, Andersen RJ, Tempone AG, Berlinck RGS. 2015. Anti-parasitic Guanidine and Pyrimidine Alkaloids from the Marine Sponge Monanchora arbuscula. Journal of Natural Products 78:1101–1112. DOI: 10.1021/acs.jnatprod.5b00070.
Sedjati S, Ambariyanto A, Trianto A, Supriyantini E, Ridlo A, Bahry MS, Wismayanti G, Radjasa OK, Mccauley E. 2020. Antibacterial Activities of the Extracts of Sponge-Associated Fungus Trichoderma longibrachiatum against Pathogenic Bacteria. Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology 15:81–90.
Sharma AK, Sharma V, Saxena J, Yadav B, Alam A, Prakash A. 2015. Isolation and Screening of Extracellular Protease Enzyme from Bacterial and Fungal Isolates of Soil. International Journal of Scientific Research in Environmental Sciences 3:334–340. DOI: 10.12983/ijsres-2015-p0334-0340.
Sibero MT, Herdikiawan D, Radjasa OK, Sabdono A, Trianto A, Triningsih DW. 2018. Antibacterial activity of sponge associated fungi against vibriosis agents in shrimp and its toxicity to Litopenaeus vannamei. AACL Bioflux 11:10–18.
van Soest RWM, Boury-Esnault N, Vacelet J, Dohrmann M, Erpenbeck D, de Voogd NJ, Santodomingo N, Vanhoorne B, Kelly M, Hooper JNA. 2012. Global diversity of sponges (Porifera). PLoS ONE 7:1–23. DOI: 10.1371/journal.pone.0035105.
Van Soest RWM, Braekman J-C, Faulkner DJ, Hajdu E, Harper MK, Vacelet J. 1996. The genus Batzella: a chemosystematic problem. Bulletin de l’Institut Royal des Sciences Naturelles de Belgique, Biologie:89–101.
Suryanarayanan TS. 2012. The diversity and importance of fungi associated with marine sponges. Botanica Marina 55:553–564. DOI: 10.1515/bot-2011-0086.
Toju H, Tanabe AS, Yamamoto S, Sato H. 2012. High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS ONE 7. DOI: 10.1371/journal.pone.0040863.
Trianto A, Radjasa OK, Purnaweni H, Bahry MS, Djamaludin R, Tjoa A, Singleton IAN, Diele K, Evan D. 2021. Potential of fungi isolated from a mangrove ecosystem in Northern Sulawesi , Indonesia?: Protease , cellulase and anti-microbial capabilities. Biodiversitas 22:1717–1724. DOI: 10.13057/biodiv/d220415.
Trianto A, Radjasa OK, Sibero MT, Sabdono A, Haryati D, Zilullah WOM, Syanindyta AR, Bahry MS, Armono HD, Supriadi S, Igarashi Y. 2020. The effect of culture media on the number and bioactivity of marine invertebrates associated fungi. Biodiversitas, Journal of Biological Diversity 21:407–412. DOI: 10.13057/biodiv/d210147.
De Voogd NJ, Cleary DFR, Hoeksema BW, Noor A, Van Soest RWM. 2006. Sponge beta diversity in the Spermonde Archipelago, SW Sulawesi, Indonesia. Marine Ecology Progress Series 309:131–142. DOI: 10.3354/meps309131.
De Voogd NJ, Francis D, Cleary R. 2008. Indo-Pacific Agelas View project Novel cytotoxic marine natural products View project. Marine Ecology 29:205–215. DOI: 10.1111/j.1439-0485.2008.00238.x.
Wang BT, Hu S, Yu XY, Jin L, Zhu YJ, Jin FJ. 2020. Studies of cellulose and starch utilization and the regulatory mechanisms of related enzymes in Fungi. Polymers 12:1–17. DOI: 10.3390/polym12030530.
Wang W, Mun B, Lee Y, Reddy MV, Park Y, Lee J, Kim H, Hahn D, Chin J, Ekins M, Nam SJ, Kang H. 2013. Bioactive sesterterpenoids from a Korean sponge monanchora sp. Journal of Natural Products 76:170–177. DOI: 10.1021/np300573m.
Wati LA. 2018. Analyzing the development of Indonesia shrimp industry. IOP Conference Series: Earth and Environmental Science 137. DOI: 10.1088/1755-1315/137/1/012101.
Wittriansyah K, Trianto A, Widyaningsih S, Radjasa OK, Pribadi R. 2016. Screening of Antibacterial MDR derived from Sponge Associated Fungus of Riung Water , Nusa Tenggara Timur. 21:197–202. DOI: 10.14710/ik.ijms.21.4.197-202.
Yan J, Shi X, Mei M, Dai H, Ye H. 2011. Amplifying and sequencing analysis the internal transcribed spacer (ITS) regions of Olpidium Viciae Kusano’s ribosomal DNA in broad bean. Advanced Materials Research 271–273:507–513. DOI: 10.4028/www.scientific.net/AMR.271-273.507.
Yusuf S, Beger M, Citra A, Tassakka MAR, Brauwer MDE, Pricella A, Umar W, Limmon G V, Moore AM, Jompa J. 2021. Cross shelf gradients of scleractinian corals in the Spermonde Islands , South Sulawesi , Indonesia. Biodiversitas 22:1415–1423. DOI: 10.13057/biodiv/d220344.
Zhang J, Chen Y, Wu C, Liu P, Wang W, Wei D. 2019. The transcription factor ACE3 controls cellulase activities and lactose metabolism via two additional regulators in the fungus Trichoderma reesei. Journal of Biological Chemistry 294:18435–18450. DOI: 10.1074/jbc.RA119.008497.

Most read articles by the same author(s)

1 2 > >>