Arbuscular mycorrhizal fungi to enhance the growth of tropical endangered species Pterocarpus indicus and Pericopsis mooniana in post gold mine field in Southeast Sulawesi, Indonesia

##plugins.themes.bootstrap3.article.main##

HUSNA
FAISAL DANU TUHETERU
ASRIANTI ARIF

Abstract

Abstract. Husna, Tuheteru FD, Arif A. 2021. Arbuscular mycorrhizal fungi to enhance the growth of tropical endangered species Pterocarpus indicus and Pericopsis mooniana in post gold mine field in Southeast Sulawesi, Indonesia. Biodiversitas 22: 3844-3853. Gold mining activities contribute to the national economy, but have a serious impact on forest and environmental degradation and pose a threat to tree species in the tropics. Reforestation of post-gold mining with tropical legume tree species is threatened with extinction. Arbuscular mycorrhizal fungi are effective in conservation of endangered plants and restoration of degraded land. The objective of the study was to evaluate the effect of native AM Fungi inoculation on the growth of Pterocarpus indicus and Pericopsis mooniana in nurseries and post-gold mining fields. P. indicus and P. mooniana seedlings were inoculated with Glomus claroideum Schenk & Smith, Glomus coronatum Giovann., and mixed AMF (G. claroideum, G. coronatum). Uninoculated seedlings were used as control treatment, and they were maintained for 4 months under greenhouse conditions. After 4 months in greenhouse, seedlings were transferred to post-gold mine and planted for 4 months. The percentage of AMF colonization, plant growth, nutrient content and uptake of N, P, K, Fe, Mn were measured after 4 months both in the greenhouse and the field. The percentage of AMF colonization under greenhouse conditions in P. indicus and P. mooniana ranged 5.67-75.3% and 2.2-41.2%. All AMF colonization tended to have higher shoot height, leaf numbers and nodules, plant dry weight and N, P, K content under greenhouse conditions. Shoot height, stem diameter, leaf dry weight, N, P, K, Mn and Fe under field conditions had higher inoculated seedlings than control four months after planting. AMF could be used to conserve endangered tree species in post-gold mining reforestation in the tropics.

##plugins.themes.bootstrap3.article.details##

References
Agus C, Primananda E, Faridah E, Wulandari D, Lestari T. 2018. Role of arbuscular mycorrhizal fungi and Pongamia pinnata for revegetation of tropical open pit coal mining soils. Int J Environ Sci Technol. 16:3365?3374
Amir H, Cavaloc Y, Laurent A, Pagand P, Gunkel P, Lemestre M, Médevielle V, Pain A, McCoy S. 2019. Arbuscular mycorrhizal fungi and sewage sludge enhance growth and adaptation of Metrosideros laurifolia on ultramafic soil in New Caledonia: A field experiment. Sci. Total Environ. 651:334–343
Asmelash F, Bekele T, Birhane E. 2016. The potential role of arbuscular mycorrhizal fungi in the restoration of degraded lands. Front. Microbiol 7: 1095
Balai Penelitian Tanah. 2009. Petunjuk Teknis Analisis Tanah, Tanaman, Air dan Pupuk. Balai Penelitian Tanah. Bogor.
Berruti A, Lumini E, Balestrini R, Bianciotto V. 2015. Arbuscular mycorrhizal fungi as natural biofertilizers: let's benefit from past successes. Front. Microbiol. 6:1559–1578
Bothe H, Turnau K, Regvar M. 2010. The potential role of arbuscular mycorrhizal fungi in protecting endangered plants and habitats [review]. Mycorrhiza 20:445–457.
Brundrett M, Bougher N, Dell B, Grove T, Majalaczuk. 1996. Working with mycorrhizas in forestry and agriculture. Australian Centre for International Agriculture Research, Canberra.
Carter MR. 1993. Soil sampling and methods of analysis Boca Raton. Lewis Publishers, USA.
Dhalaria R, Kumar D, Kumar H, Nepovimova E, Ku?ca K, Islam MT, Verma R. 2020. Arbuscular mycorrhizal fungi as potential agents in ameliorating heavy metal stress in plants. Agronomy 10 (6): 815
Duryea ML, Brown GN. 1984. Seedling physiology and reforestation success. Proceeding of the physiology working group Technical Session. Dr. W. Juck Publishers, Boston (US)
FAO, UNEP. 2020. The State of the World’s Forests 2020. Forests, biodiversity and people. Rome. https://doi.org/10.4060/ca8642en
Fiqri A, Utomo WH, Handayanto E. 2016. Effect of arbuscular mycorrhizal fungi on the potential of three wild plant species for phytoextraction of mercury from small-scale gold mine tailings. J. Degrade. Min. Land Manage. 3 (3):551–558
Fuchs B, Haselwandter K. 2008. Arbuscular mycorrhiza of endangered plant species: potential impacts on restoration strategies, in: Varma A (Eds.), Mycorrhiza. Springer, New York, pp. 565–579
Gazal RM, Blanche CA, Carandang WM. 2004. Root growth potential and seedling morphological attributes of narra (Pterocarpus indicus Willd.) transplants. For. Ecol. Manag. 195:259–266
Giri B, Kapoor R, Mukerji K. 2005. Effect of the arbuscular mycorrhizae Glomus fasciculatum and G. macrocarpum on the growth and nutrient content of Cassia siamea in a semi-arid Indian wasteland soil. New Forest 29:63–73
Habte M, Manjunath A. 1991. Categories of vesicular-arbuscular mycorrhizal dependency of host species. Mycorrhiza 1:3–12
Husna, Budi SWR, Mansur I, Kusmana C. 2015b. Diversity of Arbuscular Mycorrhizal Fungi in the Growth Habitat of Kayu Kuku (Pericopsis mooniana Thw.) In South east Sulawesi). Pak J Biol Sci 18 (1):1-10
Husna, Budi SWR, Mansur I, Kusmana C. 2016. Growth and nutrient status of Kayu Kuku (Pericopsis mooniana Thw.) with micorrhiza in soil media of nickel post mining. Pak J Biol Sci 19:158–170
Husna, Mansur I, Budi SWR, Tuheteru FD, Arif A, Tuheteru EJ, Albasri. 2019a. Effects of arbuscular mycorrhizal fungi and organic material on growth and nutrient uptake by Pericopsis mooniana in coal mine. Asian J. Plant Sci. 18:101–109
Husna, Tuheteru FD, Arif A. 2017. Arbuscular mycorrhizal fungi and plant growth on serpentine soils, in : Wu QS (Eds.), Arbsucular mycorrhizas and stress tolerance of plants. Springer, Singapore, pp. 293-303
Husna, Tuheteru FD, Arif A. 2021. The potential of arbuscular mycorrhizal fungi to conserve Kalappia celebica, an endangered endemic legume on gold mine tailings in Sulawesi, Indonesia. J. For. Res. 32: 675-682.
Husna, Tuheteru FD, Arif A, Solomon. 2019b. Improvement of early growth of endemic sulawesi trees species Kalappia celebica by arbuscular mycorrhizal fungi in gold mining tailings. IOP Conf. Ser.: Earth Environ. Sci. 394 012069.
Husna, Tuheteru FD, Arif A. 2018. Arbuscular mycorrhizal fungi symbiosis and conservation of endangered tropical legume trees, in : Giri B et al. (Eds.), Root Biology, Soil Biology 52. Springer, Germany, pp. 465–486
Husna, Budi RSW, Mansur I, Kusmana C. 2015a. Respon pertumbuhan bibit kayu kuku (Pericopsis mooniana (Thw.) Thw.) terhadap inokulasi fungi mikoriza arbuskula lokal. Pemuliaan Tanaman Hutan 9 (3): 131–148
[IUCN] International Union for Conservation of Nature and Natural Resources. 2014. IUCN Red List of Threatened Species. Version 2014.2.3.
Larcher W. 1995. Physiological plant ecology. Springer-Verlag., Berlin
Madejon E, Doronila AI, Madejon P. et al. 2012. Biosolids, mycorrhizal fungi and eucalypts for phytostabilization of arsenical sulphidic mine tailings. Agrofor Syst 84(3):389–399
Maiti SK. 2013. Ecorestoration of the coalmine degraded lands. Springer, India. pp. 171–185
Manipol MM, Tinio CE, Maldia LS, Combalicer MS. 2020. Salinity-induced changes in the morphology, physiology, and anatomy of seeds and seedlings of smooth narra (Pterocarpus indicus Willd. f. indicus). BIODIVERSITAS 21 (11):5146-5154
Maulana AF, M. Turjaman, T. Sato, Y. Hashimoto, W. Cheng, K. Tawaraya. 2017. Growth Response of Four Leguminous Trees to Native Arbuscular Mycorrhizal Fungi from Tropical Forest in Indonesia. International Journal of Plant & Soil Science, 20(3): 1-13
Muddarisna N, B.C. Siahaan. 2014. Application of organic matter to enhance phytoremediation of mercury contaminated soils using local plant species: a case study on small-scale gold mining locations in Banyuwangi of East Java. J. Degrade. Min. Land Manage. 2(1): 251-258
Muin A. 2003. Pertumbuhan anakan Ramin (Gonystylus bancanus (Miq.) Kurz)) dengan inokulasi cendawan mikoriza arbuskula (CMA) pada berbagai intensitas cahaya dan dosis fosfat alam [dissertation]. Program Pascasarjana Institut Pertanian Bogor.
Or?owska ED, Or?owski J, Mesjasz-Przyby?owicz, Turnau K. 2011. Role of mycorrhizal colonization in plant establishment on an alkaline gold mine tailing. Int. J Phytoremediation 13:185–205
Panwar J, Tarafdar JC. 2006. Distribution of three endangered medicinal plant species and their colonization with arbuscular mycorrhizal fungi. J Arid Environ 65:337–350
Prematuri R, M. Turjaman, K Tawaraya. 2020. Effect of Arbuscular Mycorrhiza Fungal Inoculation on Growth of Tropical Tree Species under Nursery and Post-Opencast Bauxite Mining Field in Bintan Island, Indonesia. International Journal of Plant & Soil Science, 32(20): 1-13
Riaz M, Kamran M, Fang Y, Wang Q, Cao H, Yang G, Deng L, Wang Y, Zhou Y, Anastopoulos I, Wang. 2021. Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: A critical review. J Hazard. Mater 402:123919
Sharma D, Rupan K, Bhatnagar AK. 2008. Arbuscular mycorrhizal (AM) technology for the conservation of Curculigo orchioides Gaertn.: an endangered medicinal herb. World J Microbiol Biotechnol 24:395-400
Sheoran V, Sheoran AS, Poonia R. 2010. Soil reclamation of abandoned mine land by revegetation: a review. Int. J. Soil Sedim. Water 3:1–20
Smith SE, Read DJ. 2008. Mycorrhizal symbiosis. Third ed. Academic Press USA
Soerianegara I, Lemmens RHMJ. 1994. Plant resources of South-East Asia no 5(1) timber trees: major commercial timbers. Prosea Foundation, Bogor, pp. 374–379
Sulakhudin, Suswati D, M. Hatta. 2017. The effect of ameliorants on improvement of soil fertility in post gold mining land at West Kalimantan. J. Degrade. Min. Land Manage. 4(4): 873-880
Thomas E, Jalonen R, Loo J, Boshier D, Gallo L, Cavers S et al. 2014. Genetic considerations in ecosystem restoration using native tree Species. For. Ecol. Manag. 333:66–75.
Thomson LAJ (2006) Pterocarpus indicus (narra), in: Elevitch CR (ed) Species profiles for Pacific Island agroforestry. ver. 2.1. Permanent Agriculture Resources (PAR), H?lualoa. http://www.traditionaltree.org.
Tuheteru FD, C Kusmana, I Mansur, Iskandar, EJ Tuheteru. 2016. Potential of lonkida (Nauclea orientalis L.) for phytoremediation of acid mined drainage at PT. Bukit Asam Tbk. (Persero), Indonesia. Res J Bot 11:9-17
Tuheteru FD, Asrianti A, Widiastuti E, Rahmawati N. 2017. Heavy metal uptake by indigenous arbuscular mycorrhizas of Nauclea orientalis L. and the potential for phytoremediation of serpentine soil. J For Sci 11(1):76–84
Tuheteru FD, QS Wu. 2017. Arbuscular Mycorrhizal Fungi and Tolerance of Waterlogging Stress in Plants. In : QS Wu (eds.) Arbuscular Mycorrhizas and Stress Tolerance of Plants. Springer. Singapore.
Tuheteru FD, Husna, Albasri, A. Arif , S.A.Wulan and K. Kramadibrata. 2019. Arbuscular mycorrhizal fungi associated with adaptive plants in gold mine tailing. BIODIVERSITAS, 20(11): 3398-3404
Tuheteru FD, Arif A, Husna, Mansur I, Tuheteru EJ, Jusniar, Basrudin, Albasri, Hadijah MH, Karepesina S. 2020. Arbuscular mycorrhizal fungal inoculation improves Nauclea orientalis L. growth and phosphorus uptake in gold mine tailing soil media. J. Degrade. Min. Land Manage 7 (3):2193-2200
Turjaman M, Santosa E, Sumarna Y. 2006a. Arbuscular mycorrhizal fungi increased early growth of gaharu wood species Aquilaria malaccensis and A. crasna under greenhouse conditions. J. For. Res. 3(2):139-148.
Turjaman M, Tamai Y, Santoso E, Osaki M, Tawaraya K. 2006b. Arbuscular mycorrhizal fungi incresead early growth of two nontimber forest product species Dyera polyphylla and Aquilaria filaria under greenhouse conditions. Mycorrhiza 16:459-464.
Turjaman M, E. Santoso, K. Tawaraya. 2007. Arbuscular Mycorrhizal Fungi Increased Plant Growth and Nutrient Concentrations of Milkwood Tropical Tree Species Alstonia scholaris Under Greenhouse Conditions. Journal of Forestry Research 4 (2) : 61 – 71
Turjaman M, E. Santoso, IR. Sitepu, K. Tawaraya, E. Purnomo, R. Tambunan, M. Osaki. 2009. Mycorrhizal Fungi Increased Early Growth of Tropical Tree Seedlings in Adverse Soil. Journal of Forestry Research, 6(1): 17-25
Urgiles N, Loja´n P, Aguirre N, Blaschke H, Gu¨nter S, Stimm B, Kottke, I. 2009. Application of mycorrhizal roots improves growth of tropical tree seedlings in the nursery: a step towards reforestation with native species in the Andes of Ecuador. New Forests 38:229–239
Wang F, Lin X, Yin R. 2005. Heavy metal uptake by arbuscular mycorrhizas of Elsholtzia splendens and the potential for phytoremediation of contaminated soil. Plant Soil 269:225–23
Wang F. 2017. Arbuscular mycorrhizas and ecosystem restoration, in : QS Wu (Eds.) Arbuscular mycorrhizas and stress tolerance of plants. Springer, Singapore.
Wulandari D, Saridi, Cheng W, Tawaraya K. 2016. Arbuscular mycorrhizal fungal inoculation improves Albizia saman and Paraserianthes falcataria growth in post-opencast coal mine field in East Kalimantan, Indonesia. Forest Ecol. Manage 376:67–73
Wulandari D, Saridi, Cheng W, Tawaraya K. 2014. Arbuscular mycorrhizal colonization enhanced early growth of Mallotus paniculatus and Albizia saman under nursery condition in East Kalimantan, Indonesia. Int J For Res 2014:898494.
Zubek S, Turnau K, Tsimilli-Michael M, Strasser RJ. 2009. Response of endangered plant species to inoculation with arbuscular mycorrhizal fungi and soil bacteria. Mycorrhiza 19:113–123

Most read articles by the same author(s)