Diversity of arbuscular mycorrhizal fungi in asphalt post-mining land in Buton Island, Indonesia




Abstract. Tuheteru FD, Husna, Albasri, Effendy HM, Arif A, Basrudin, Tuheteru EJ, Mulyono S, Irianto RSB. 2022. Diversity of arbuscular mycorrhizal fungi in asphalt post-mining land in Buton Island, Indonesia. Biodiversitas 23: 6327-6334. Studies on the presence and diversity of Arbuscular Mycorrhizal Fungi (AMF) on overburden (OB) and asphalt post-mining areas in Buton Island are still limited. The purpose of this study was to examine the presence and diversity of AMF on OB and asphalt post-mining stockpiles in Buton Island, Southeast Sulawesi Province. The sampling of soil and roots of successional plants was carried out at eight post-mining sites at the IUP Kabungka (Pasarwajo) (6 sites) PT. WIKA Aspal and IUP Lawele (2 sites), PT. WIKA Bitumen. The AMF spores were isolated using the wet filter pour method, followed by the identification of AMF which was done by observing the morphology of AMF spores. The results showed that all successional plants were in symbiosis with AMF, which was indicated by the existence of AMF structure in plant roots with the percentage of AMF colonization ranging from 5 - 95%. The number of spores per 50 g ranged from 1 to 9 spores. A total of 9 AMF species were found to belong to five genera, i.e., Claroideoglomus, Haloatospora, Glomus, Gigaspora, and Cetraspora from three families. Claroideoglomus claroideum was found to be the most dominant species isolated with the high occurrence and the highest Importance and Shannon-Wiener Diversity Indices followed by Haloatospora cf. pansihalos, Glomus sp. 5, and Glomus sp. 4. This study also showed that the AMF diversity index differed among locations. The presence of AMF can accelerate the emergence and development of adaptive plants on post-asphalt mining land in Buton Island.


Abdedaiem R, Rejili M, Mahdhi M, Lajudie dP, Mars M. 2020. Phylogeny and distribution of arbuscular mycorrhizal fungi associated with Vachellia tortilis ssp. raddiana in relation to soil properties under arid ecosystems of Tunisia. Mycol Progress 19, 495–504. doi: 10.1007/s11557-020-01572-wAsmelash F, Bekele T, Birhane E. 2016. The potential role of arbuscular mycorrhizal fungi in the restoration of degraded lands. Front Microbiol 7: 1095
Bainard LD, Dai M, Furrazola-Gómez E, Torres-Arias Y, Bainard JD, Sheng M, Eilers W, Hamel C. 2015. Arbuscular mycorrhizal fungal communities are in?uenced by agricultural land use and not soil type among the chernozem great groups of the Canadian Prairies. Plant Soil 387, 351–362
Brundrett M, N Bougher, B Dell, T Grove, N Malajczuk. 1996. Working with Mycorrhizas in Forestry and Agriculture. Australian Centre for International Agriculture Research Canberra.
Chaudhary VB, Cuenca G,?Johnson NC. 2018. Tropical-temperate comparison of landscape-scale arbuscular mycorrhizal fungal species distributions. Divers. Distrib., 24:116–128. doi: 10.1111/ddi.12664
Chiomento JLT, Stürmer SL, Carrenho R, da Costa RC, Sche?er-Basso SM, Antunes LEC, Nienow AA, Calvete EO. 2019. Composition of arbuscular mycorrhizal fungi communities signals generalist species in soils cultivated with strawberry. Sci. Hortic., 253: 286–294
Cuenca G, De Andrade Z, Escalante G. 1998. Diversity of Glomalean spores from natural, disturbed and revegetated communities growing on nutrient-poor tropical soils. Soil Biol. Biochem 30(6):711-719
De Moura MA, Oki Y, Arantes-Garcia L, Cornelissen T, Nunes YRF, Fernandes GW. 2022. Mycorrhiza fungi application as a successful tool for worldwide mine land restoration: Current state of knowledge and the way forward. Ecol. Eng. 178, e106580
Gerdemann JW, Nicolson TH. 1963. Spores of mycorrhizal endogone species extracted from soil by wet sieving and decanting. Trans Brit Mycol Soc. 46:235-244
Husna, Budi SWR, Mansur I, Kusmana C. 2015. Diversity of arbuscular mycorrhizal fungi in the growth habitat of kayu kuku (Pericopsis mooniana Thw.) in Southeast Sulawesi. Pak J Bio Sci 18(1): 1-10.
Husna, Budi SWR, Mansur I, Kusmana C. 2016. Growth and nutrient status of Kayu Kuku (Pericopsis mooniana Thw.) with mycorrhiza in soil media of nickel post mining. Pak J Biol Sci 19: 158-170.
Husna, Tuheteru FD, Arif A, Basrudin, Albasri. 2021c. Biodiversity of arbuscular mycorrhizal fungi in tropical Indonesia. In : Wu et al. (editors) : An Introduction to mycroorganisms. Nova Science Publishers, Inc
Husna, FD Tuheteru, A Arif. 2021b. Arbuscular mycorrhizal fungi to enhance the growth of tropical endangered species Pterocarpus indicus and Pericopsis mooniana in post gold mine field in Southeast Sulawesi, Indonesia. Biodiversitas, 22(9): 3844-3853
Husna, Mansur I, Budi SWR, Tuheteru FD, Arif A, Tuheteru EJ, Albasri. 2019. Effects of arbuscular mycorrhizal fungi and organic material on growth and nutrient uptake by Pericopsis mooniana in coal mine. Asian J Plant Sci 18: 101-109
Husna, Tuheteru FD, Arif A. 2017. Arbuscular mycorrhizal fungi and plant growth on serpentine soils. In: Wu QS (ed) Arbsucular mycorrhizas and stress tolerance of plants. Springer, Singapore,
Husna, Tuheteru FD, Arif A. 2021a. The potential of arbuscular mycorrhizal fungi to conserve Kalappia celebica, an endangered endemic legume on gold mine tailings in Sulawesi, Indonesia. J For Res 32: 675-682.
Jean-Philippe SR, Franklin JA, Buckley DS, Hughes, K. 2011. The effect of mercury on trees and their mycorrhizal fungi. Environ. Pollut. 159: 2733-2739
Kivlin SN, Christine VH, KK Treseder. 2011. Global diversity and distribution of arbuscular mycorrhizal fungi. . Soil Biol. Biochem 43:2294-2303
Kodre A, Arcon I, Debeljak M, Potisek M, Likar M, Vogel-Mikuš K. 2017. Arbuscular mycorrhizal fungi alter Hg root uptake and ligand environment as studied by X -ray absorption fine structure. Environ. Exp. Bot 133 : 12–23.
Kramadibrata K, Riyanti EI, Simanungkalit RDM. 1995. Arbuscular mycorrhizal fungi from the rhizospheres of soybean crops in Lampung and West Java. Biotropia 8:30–38
Kramadibrata K. 2009. The distribution of Glomeromycota in Cacao rhizosphere in Indonesia.
Reinwardtia 12(5):347–356
Martins WBR, Lima MDR, Udson de Oliveira Barros Juniora, Larissa Sousa Villas-Boas Amorim, Francisco de Assis Oliveira, G. Schwartz. 2020. Ecological methods and indicators for recovering and monitoring ecosystems after mining: A global literature review. Ecol. Eng., 145 : 105707
Melo CD, Walker C, Krüger C. et al. 2019. Environmental factors driving arbuscular mycorrhizal fungal communities associated with endemic woody plant Picconia azorica on native forest of Azores. Ann Microbiol 69, 1309–1327. doi: 10.1007/s13213-019-01535-x
Moraes JMA de Souza, Zanchi CS, Pires GC, Moretti CF, Barbosa MV, Silva AO, Pacheco LP, Carneiro MAC, Oliveira RL, Kemmelmeier K, Souza ED. 2019. Arbuscular mycorrhizal fungi in integrated crop livestock systems with intercropping in the pasture phase in the Cerrado. Rhizosphere 11: 100165
Schneck NC, Perez Y. 1988. Manual for the identification of VA mycorrhizal fungi. 2nd edition. Florida (US): INVAM & University of Florida
Schüßler A, Walker C. 2010. The Glomeromycota. A species list with new families and new genera. Kew: The Royal Botanic Garden Kew
Shah MA. 2014. Mycorrhizas : Novel dimensions in the changing world. Springer. New Delhi
Shukla A, D Vyas, Anuradha J. 2013. Soil depth: an overriding factor for distribution of arbuscular mycorrhizal fungi. J. Soil Sci. Plant Nutr. 13(1):23-33
Soka GE, Ritchie ME. 2018. Arbuscular mycorrhizal spore composition and diversity associated with di?erent land uses in a tropical savanna landscape, Tanzania. Appl. Soil Ecol., 125: 222-232
Solaiman ZM, B Mickan. 2014. Use of Mycorrhiza in Sustainable Agriculture and Land Restoration. In : Z.M. Solaiman et al. (eds.), Mycorrhizal Fungi: Use in Sustainable Agriculture and Land Restoration, Soil Biology 41. Springer. Berlin
Stürmer SL, Bever JD, Morton JB. 2018. Biogeography of arbuscular mycorrhizal fungi (Glomeromycota): A phylogenetic perspective on species distribution patterns. Mycorrhiza, 28, 587–603
Suharno, Kasiamdari RS, Soetarto ES, Sancayaningsih RP. 2016. Presence of arbuscular mycorrhizal fungi on fern from tailing deposition area of gold mine in Timika, Indonesia. International Journal of Environmental Bioremediation & Biodegradation, 4 (1), 1-7.
Suharno, Soetarto ES, Sancayaningsih RP, Kasiamdari RS. 2017. Association of arbuscular mycorrhizal fungi (AMF) with Brachiaria precumbens (Poaceae) in tailing and its potential to increase the growth of maize (Zea mays). Biodiversitas 18: 433-441
Suting EG, Devi O. 2021. Occurrence and diversity of arbuscular mycorrhizal fungi in trap cultures from limestone mining sites and un-mined forest soil of Mawsmai, Meghalaya. Trop Ecol 62, 525–537. doi: 10.1007/s42965-021-00144-7
Suaryana. 2016. Performance evaluation of stone matrix asphalt using indonesian natural rock asphalt as stabilizer. International Journal of Pavement Research and Technology, 9 (5): 387-392
Taheri WI, JD Bever. 2010. Adaptation of plants and arbuscular mycorrhizal fungi to coal tailings in Indiana. Appl Soil Ecol 45(3):138–143
Tomo Y, B. Prasetya. 2021. Exploration of arbuscular mycorrhiza on various soil depths in bull grass rooting zone on post-mining land. Jurnal Tanah dan Sumberdaya Lahan 8 (2): 341-347
Tuheteru FD, Arif A, Husna, Mansur I, Tuheteru EJ, Jusniar, Basrudin, Albasri, Hadijah MH, Karepesina S. 2020a. Arbuscular mycorrhizal fungal inoculation improves Nauclea orientalis L. growth and phosphorus uptake in gold mine tailing soil media. J Degraded Mining Land Manag 7 (3): 2193-2200
Tuheteru FD, Arif A, Wulan SA, Kramadibrata K. 2019. Arbuscular mycorrhizal fungi associated with adaptive plants in gold mine tailing. Biodiversitas 20 (11): 3398-3404
Tuheteru FD, Husna, Albasri, Arif A, Kramadibrata K, Soka, G. 2020b. Composition and diversity of arbuscular mycorrhizal fungi spore associated with different land-use types in tropical gold mine. J. Degrade. Min. Land Manage. 8(1): 2503-2512
Wang F. 2017a. Arbuscular Mycorrhizas and Ecosystem Restoration. In : QS Wu (eds.) Arbuscular Mycorrhizas and Stress Tolerance of Plants. Springer. Singapore.
Wang F. 2017b. Occurrence of arbuscular mycorrhizal fungi in mining-impacted sites and their contribution to ecological restoration: Mechanisms and applications, Critical Reviews in Environmental Science and Technology, 47:20, 1901-1957
Wei Y, Hou H, Li J, Shangguan Y, Xu Y, Zhang J, Zhao L, Wang W. 2014. Molecular diversity of arbuscular mycorrhizal fungi associated with an Mn hyperaccumulator Phytolacca americana, in Mn mining area. Agric., Ecosyst. Environ.Appl. Soil Ecol. 82, 11–17.
Widhiyatna D, Hutamadi R., Sutrisno. 2007. Tinjauan konservasi sumberdaya aspal buton. Buletin Sumberdaya Geologi, 2(3): 42-49
?pik M, Moora M, Liira J, Zobel M. 2006. Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. J. Ecol. 778:778-790.

Most read articles by the same author(s)