Used macroinvertebrates as bioindicators to compare water quality from different land uses in Watumokala and Nokambu Rivers, Southeast Sulawesi, Indonesia

##plugins.themes.bootstrap3.article.main##

KAHIRUN
BASRUDIN
LA ODE SIWI
LIES INDRIYANI
SAHINDOMI BANA
LA BACO SUDIA
LA ODE MUHAMMAD ERIF
LA ODE MIDI
NUR MAULINA
NURLIN JAMALUDDIN

Abstract

Abstract. Kahirun, Basrudin, Siwi LO, Indriyani L, Bana S, Sudia LB, Erif LOM, Midi LO, Maulina N, Jamaluddin N. 2023. Used macroinvertebrates as bioindicators to compare water quality from different land uses in Watumokala and Nokambu Rivers, Southeast Sulawesi, Indonesia. Biodiversitas 24: 5693-5708. Macroinvertebrates are animals that live in waters, both on the surface of the water, in riverbeds attached to substrates or mud, and in several biotypes, which are used as bioindicators of water quality due to anthropogenic disturbances that can change land use around rivers. This study aimed to describe the physicochemical parameters and macroinvertebrate community in the Watumokala and Nokambu rivers in Southeast Sulawesi, Indonesia, and to compare the water quality in the two rivers based on ecological index measurements. This study used a survey method at the upstream, middle, and downstream sampling locations for each river with different land use. Data collection on macroinvertebrates and physicochemical parameters was carried out at each station in each river. The data analysis carried out in this study was to calculate the Shannon-Wienner diversity index, species abundance index, uniformity index, Margalef richness index, and the Family Biotic Index (FBI). The results of this study indicated that in the Watumokala River, there were 17 families from 9 macroinvertebrate orders with an abundance of 1852 individuals, more than in the Nokambu River where 14 families were found from 8 orders with an abundance of 904 individuals. There is an influence of land use habitat on macroinvertebrates in the Watumokala and Nokambu Rivers. In the Watumokala River station 1 and station 3 are similar and have a significant correlation with several indicators indicating that the water quality is still good, while at station 2 there is a positive correlation with physicochemical parameters which indicates that the water quality is slightly polluted. Likewise, in the Nokambu River, at station 1 and station 2, there are similarities and significant correlations between physicochemical parameters and macroinvertebrate communities in providing indicators that water quality is still good, while station 3 shows a significant correlation with physicochemical parameters and macroinvertebrates as indicators of water quality polluted. So, the results of this research are useful in efforts to manage land and water in rivers that are experiencing pollution.

##plugins.themes.bootstrap3.article.details##

References
Achugbu IC, Olufayo AA, Balogun IA, Dudhia J, McAllister M, Adefisan EA, Naabil E. 2022. Potential effects of Land Use Land Cover Change on streamflow over the Sokoto Rima River Basin. Heliyon 8(7): 1–16. DOI:10.1016/j.heliyon.2022.e09779.
Anh NT, Can LD, Nhan NT, Schmalz B, Luu TL. 2023. Influences of key factors on river water quality in urban and rural areas: A review. Case Studies in Chemical and Environmental Engineering 8 (5): 1 - 12. DOI: 10.1016/j.cscee.2023.100424.
Atharinafi Z, Wijaya N. 2021. Land use change and its impacts on surface runoff in rural areas of the upper citarum watershed (case study: Cirasea subwatershed). Journal of Regional and City Planning 32(1): 36–55. DOI:10.5614/jpwk.2021.32.1.3.
Ayd?n GB, Belgin ÇE. 2022. Evaluation of ecological risk analysis for benthic macroinvertebrates in paddy fields in the Meriç–Ergene River Basin (Turkish Thrace). Oceanological and Hydrobiological Studies 51(2): 212–223. DOI: 10.26881/oahs-2022.2.09.
Bae MJ, Park YS. 2020. Key determinants of freshwater gastropod diversity and distribution: The implications for conservation and management. Water (Switzerland) 12(7): 5–7. DOI:10.3390/w12071908.
Bartkowska A, Mieczan T, P?aska W. 2023. Colonization of Artificial Substrates by Invertebrate Macrofauna in a River Ecosystem - Implications for Forensic Entomology. International Journal of Environmental Research and Public Health 20(4): 1 - 11. DOI: 10.3390/ijerph20042834.
Bassey BO, Nosazeogie EO, Izge MA, Bello BO, Abiodun O, Olapoju O, Ajani G, Igbo JK, Balogun KJ, Yakub AS. 2020. Diversity of Macrobenthic Invertebrates in Relations to Some Selected Water Quality Parameters in Lagos Lagoon, Nigeria. Biomedical Journal of Scientific & Technical Research 30(1): 22993–23002. DOI:10.26717/bjstr.2020.30.004885.
Camacho MVC, Taniegra RM. 2019. Impacts of anthropogenic disturbances on macroinvertebrate communities in streams of Catanduanes watershed forest reserve, Catanduanes, Philippines and the need for conservation. Asian Journal of Conservation Biology 8(1): 15–31. ISSN 2278-7666.
Carrasco-Badajoz C, Rayme-Chalco C, Arana-Maestre J, Álvarez-Tolentino D, Ayala-Sulca Y, Sanchez-Peña M. 2022. Aquatic macroinvertebrate trophic guilds, functional feeding groups, and water quality of an andean urban river. Frontiers in Environmental Science, 10(9): 1–15. DOI:10.3389/fenvs.2022.1003207.
Castro-López D, Rodríguez-Lozano P, Arias-Real R, Guerra-Cobián V, Prat N. 2019. The influence of riparian corridor land use on the Pesquería River’s macroinvertebrate community (N.E. Mexico). Water (Switzerland) 11(9): 1–18. DOI:10.3390/w11091930.
Clark KE, Bravo VD, Giddings SN, Davis KA, Pawlak G, Torres MA, Adelson AE, César-Ávila CI, Boza X, Collin R. 2022. Land Use and Land Cover Shape River Water Quality at a Continental Caribbean Land-Ocean Interface. Frontiers in Water 4(03):1 – 19. DOI: 10.3389/frwa.2022.737920.
Dede M, Sunardi S, Lam KC, Withaningsih S. 2023. Relationship between landscape and river ecosystem services. Global Journal of Environmental Science and Management 9(3): 637–652. DOI:10.22035/gjesm.2023.03.18.
dos Reis Oliveira PC, Kraak MHS, Pena-Ortiz M, van der Geest HG, Verdonschot PFM. 2020. Responses of macroinvertebrate communities to land use specific sediment food and habitat characteristics in lowland streams. Science of the Total Environment 703: 1 – 9. DOI: 10.1016/j.scitotenv.2019.135060.
Espinosa R, Andino P, Cauvy-Fraunié S, Dangles O, Jacobsen D, Crespo-Pérez V. 2020. Diversity patterns of aquatic macroinvertebrates in a tropical high-andean catchment. Revista de Biologia Tropical 68(2): 39–53. DOI: 10.15517/RBT.V68IS2.44331.
Fierro P, Bertrán C, Tapia J, Hauenstein E, Peña-Cortés F, Vergara C, Cerna C, Vargas-Chacoff L. 2017. Effects of local land-use on riparian vegetation, water quality, and the functional organization of macroinvertebrate assemblages. Science of the Total Environment 609: 724–734. DOI: 10.1016/j.scitotenv.2017.07.197.
Gerth WJ, Li J, Giannico GR. 2017. Agricultural land use and macroinvertebrate assemblages in lowland temporary streams of the Willamette Valley, Oregon, USA. Agriculture, Ecosystems and Environment 236: 154–165. DOI: 10.1016/j.agee.2016.11.010.
Gething KJ, Ripley MC, Mathers KL, Chadd RP, Wood PJ. 2020. The influence of substrate type on macroinvertebrate assemblages within agricultural drainage ditches. Hydrobiologia 847 (20): 4273–4284. DOI: 10.1007/s10750-020-04416-6.
Gholizadeh M, Rezvani SA, Zibaei M. 2021. Effects of land use change on macroinvertebrate community composition in upper reaches of the Chehel-Chai chatchment, Iran. Caspian Journal of Environmental Sciences 19(3): 523–533. DOI: 10.22124/cjes.2021.4938.
Hilsenhoff WL. 1988. Rapid Field Assessment of Organic Pollution with a Family-Level Biotic Index. Source Journal of the North American Benthological Society J. N. Am. Benthol. Soc. 7(4): 65–68. DOI:10.2307/1467832.
Jonsson M, Burrows RM, Lidman J, Fältström E, Laudon H, Sponseller RA. 2017. Land use influences macroinvertebrate community composition in boreal headwaters through altered stream conditions Ambio 46(3): 11–323. DOI:10.1007/s13280-016-0837-y.
Kahirun, Baco L, Hasani UO. 2017. Morphometric Characteristics Influence Hidrological of Roraya Watersheed). Ecogreen 3(2): 105–115.
Kahirun, Sabaruddin L, Mukhtar, Kilowasid LMH. 2019. Evaluation of land use impact on river water quality using macroinvertebrates as bioindicator in Lahumoko Watershed, Buton Island, Indonesia. Biodiversitas 20(6): 1658–1670. DOI:10.13057/biodiv/d200623.
Kath J, Thomson JR, Thompson RM, Kefford BJ, Dyer FJ, Mac Nally R. 2018. Interactions among stressors may be weak: Implications for management of freshwater macroinvertebrate communities. Diversity and Distributions 24(7): 939–950. DOI:https:10.1111/ddi.12737.
Kenee E, Seriño L, Bullecer RC, Felomina M, Talagsa P, Jan M, Madrona C. 2018. Role of Macroinvertebrates As Bioindicators and Residents’ Perception on Water Quality in Bilar River, Bohol, Philippines. Development Studies 2(1): 81–94.
Ko CY, Asano S, Lin MJ, Ikeya T, Peralta EM, Triño EMC, Uehara Y, Ishida T, Iwata T, Tayasu I, Okuda N. 2021. Rice paddy irrigation seasonally impacts stream benthic macroinvertebrate diversity at the catchment level. Ecosphere 12(5). DOI:10.1002/ecs2.3468.
Krebs CJ. 2014. Ecology: The Experimental Analysis of Distribution and Abundance. In British Library Cataloguing-in-Publication Data. New York, USA 6: 1 – 646.
Krisanti M, Maknuun LLI, Anzani YM, Yuwono AS, Widyastuti R, Wardiatno Y. 2020. A comparative study on macroinvertebrates community in three rivers of Jawa Island, Indonesia. AACL Bioflux 13(2): 570–581. ISSN: 18449166.
Kujanová K, Matoušková M, Hošek Z. 2018. The relationship between river types and land cover in riparian zones. Limnologica 71(5): 29–43. DOI:10.1016/j.limno.2018.05.002.
Kurnianto AS, Baiti RN, Purnomo H. 2021. Macroinvertebrates reveal water quality differences in various agricultural management. Journal of Tropical Biodiversity and Biotechnology 6(2), 1–11. DOI: 10.22146/JTBB.61507.
Legendre P, Legendre L. 1998. Numerical Ecology, Volume 24. (Developments in Environmental Modelling) 24: 870. DOI: 10.1017/CBO9781107415324.004.
Liu Y, Tian Y, Gao Y, Cui D, Zhang W, Jiao Z, Yao F, Zhang Z, Yang H. 2022. The Impacts of Different Anthropogenic Disturbances on Macroinvertebrate Community Structure and Functional Traits of Glacier?Fed Streams in the Tianshan Mountains. Water (Switzerland) 14(8): 1–17. DOI: 10.3390/w14081298.
Lu A, Li J, Zheng B, Yin X. 2022. Effect of Different Land Use Types on the Taxonomic and Functional Diversity of Macroinvertebrates in an Urban Area of Northern China. Water (Switzerland) 14(23): 1 - 16. DOI:10.3390/w14233793.
Makumbe P, Kanda A, Chinjani T. 2022. The Relationship between Benthic Macroinvertebrate Assemblages and Water Quality Parameters in the Sanyati Basin, Lake Kariba, Zimbabwe. Scientific World Journal (2022): 1 - 10. DOI:10.1155/2022/5800286.
Mamun M, Jargal N, An KG. 2022. Spatio-temporal characterization of nutrient and organic pollution along with nutrient-chlorophyll-a dynamics in the Geum River. Journal of King Saud University - Science 34(7):1 – 11. DOI:10.1016/j.jksus.2022.102270.
Mcartor JD, Detmer TM, Porreca AP, Parkos Iii JJ, Wahl DH. 2021. Do Freshwater Macroinvertebrates Select for Different Substrates Used in Fisheries Habitat Enhancement? Transactions of the Illinois State Academy of Science 114: 1–5.
Mello LC, Abessa DMS. 2021. Using the benthic macroinvertebrates as indicators of the water quality in the “Cachoeira do Paraíso” waterfall (Itinguçu State Park, Peruíbe, SP, Brazil) / Uso de macroinvertebrados bentônicos como indicadores de qualidade da água na Cachoeira do Paraíso. Brazilian Journal of Animal and Environmental Research 4(4):5121–5140. DOI:10.34188/bjaerv4n4-020.
Mena-Rivera L, Salgado-Silva V, Benavides-Benavides C, Coto-Campos JM, Swinscoe THA. 2017. Spatial and seasonal surface water quality assessment in a tropical urban catchment: Burío River, Costa Rica. Water (Switzerland), 9(8): 1 – 12. DOI: 10.3390/w9080558.
Mengen D, Ottinger M, Leinenkugel P, Ribbe L. 2020. Modeling river discharge using automated river width measurements derived from sentinel-1 time series. Remote Sensing 12(19): 1–24. DOI:10.3390/rs12193236.
Mihaylova V, Yotova G, Kud?ak B, Venelinov T, Tsakovski S. 2022. Chemometric Evaluation of WWTPs’ Wastewaters and Receiving Surface Waters in Bulgaria. Water 14(521): 1–15. DOI: 10.3390/w14040521.
Nugrahaningrum A, Harianja, Nugroho MFH, Soesilohadi RCH. 2017. Macroinvertebrate diversity role in Water Quality Assessment of Winongo and Gajah Wong Rivers, Yogyakarta, Indonesia. Bonorowo Wetlands 7 (1): 31-37. DOI:10.13057/bonorowo/w070107.
Ojija F, Laizer H. 2016. Macro Invertebrates as Bio Indicators of Water Quality in Nzovwe Stream, in Mbeya, Tanzania. International Journal of Scientific & Technology Research 5(06): 211–222. www.ijstr.org.
Onana FM, Tamsa AA, Tchakonte S, Koji E, Tchatcho NLN, Nfongmo YN, Togouet SHZ. 2021. Effects of Industrial Agriculture and Urbanization on Structure and Functional Organization of Macroinvertebrate of Coastal Streams in Cameroon. Journal of Water Resource and Protection 13(02): 154–171. DOI: 10.4236/jwarp.
132009.
Orozco-González CE, Ocasio-Torres ME. 2023. Aquatic Macroinvertebrates as Bioindicators of Water Quality: A Study of an Ecosystem Regulation Service in a Tropical River. Ecologies 4(2): 209–228. DOI:10.3390/ecologies4020015.
Pigawati B, Ghaisani S. 2020. Typology of the Peri-Urban Area in Demak District. Jurnal Teknik Sipil Dan Perencanaan 22(2): 84–93. DOI:10.15294/jtsp.v22i2.22663.
Rais A, Afandhi A, Prasetya B. 2019. Water Quality Analysis on Tertiary Channels Using Macroinvertebrate In Songka Sub-District, Palopo City. Jurnal Pembangunan dan Alam Lestari 10(1): 9–13. DOI:10.21776/ub.jpal.2019.010.
02.
Rutkowska B, Szulc W, Wy?y?ski W, Go?cinna K, Torma S, Vil?ek J, Koco Š. 2022. Water Quality in a Small Lowland River in Different Land Use. Hydrology 9(11): 1–14. DOI:10.3390/hydrology9110200.
Schürings C, Feld CK, Kail J, Hering D. 2022. Effects of agricultural land use on river biota: a meta-analysis. Environmental Sciences Europe 34(1). 1- 13. DOI:10.1186/ s12302-022-00706-z.
Shannon C. 1948). A Mathematical Theory of Communication. Bell System Technology 27(1): 379–656.
Shim MJ, Yoon SC, Yoon YY. 2018. The influence of dam construction on water quality in the lower Geum River, Korea. Environmental Quality Management 28(2): 113-121. DOI: 10.1002/tqem.21591.
Suhaila, A. H. & Che Salmah, M. R. (2017). Application of aquatic insects (Ephemeroptera, plecoptera and trichoptera) in water quality assessment of Malaysian headwater. Tropical Life Sciences Research 28(2): 143–162. DOI: 10.21315/tlsr2017.28.2.11.
Suprayogi S, Widyastuti M, Hadi MP, Christanto N, Tivianton TA, Fadhilah GO, Rahmawati L, Fadlillah LN. 2022. Runoff Coefficient Analysis After Regional Development in Tambakbayan Watershed, Yogyakarta, Indonesia. Jurnal Ilmu Lingkungan 20(2):396–405. DOI: 10.14710/jil.20.2.396-405.
Tamiru SM, Asfaw SL, Yilma SM. 2017. Correlation study of some physico-chemical parameters and benthic macroinvertebrates metrics on the ecological impacts of floriculture industries along Wedecha River, Debrezeit, Ethiopia. Journal of coastal life medicine 5: 433-440.
Tessema G, Tesfahun A. 2018. Assessment of Benthic Macro-invertebrate Communities in Relation to Water Quality in Teltele Stream, Ambo West Showa, Ethiopia. Greener Journal of Environmental Management and Public Safety 7(3): 43–52. DOI:10.15580/gjemps.2018.3.070318092.
Utami S, Fajar E. 2022. Exploration of Aquatic Macroinvertebrates as a Bioindicator of Water Quality in Nogosari River, Pacitan Regency. In Proceedings of the 2nd International Conference on Education and Technology (ICETECH). Atlantis Press 630 (2021): 91 – 98. DOI:10.2991/assehr.k.220103.015.
Viana D, Lima M, Pedro L, Plese DM, Honorato I. 2020. Effects Of Land Use On The Community Of Benthic Macroinvertebrates In Streams of The Iquiri River Basin ( Acre , Efeitos Do Uso Do Solo Sobre A Comunidade De Macroinvertebrados Bentônicos Em Riachos De Pequena Ordem Na Bacia Do Rio Iquiri ( Acre, Brasil 2: 160–175.
Villantes YL, Nuñeza OM. 2015. Macroinvertebrates as bioindicators of water quality in labo and clarin rivers, misamis occidental, Philippines. International Journal of Biosciences (IJB) 6(9): 62–73. DOI:10.12692/ijb/6.9.62-73.
Wang H, He G. 2022. Rivers: Linking nature, life, and civilization. River 1(1): 25–36. DOI:10.1002/rvr2.7.
Wang Y, Li S, Tan X, Zhang Q. 2022. The combined effects of land use and seasonal environmental factors on stream food web structure. Frontiers in Environmental Science 10(9): 1–15. DOI: 10.3389/fenvs.2022.969980.
Yuan WLiJ, Liu C, Shang R. 2022. How to Realize the Integration of Urbanization and Rural Village Renewal Strategies in Rural Areas: The Case Study of Laizhou, China. Land, 11(12): 1–21. DOI:10.3390/land11122161.
Zelnik I, Muc T. 2020. Relationship between environmental conditions and structure of macroinvertebrate community in a hydromorphologically altered pre-alpine river. Water (Switzerland) 12(11): 1 – 15. DOI:10.3390/w12112987.

Most read articles by the same author(s)