Tree density impact on growth, roots length density, and yield in agroforestry based cocoa

##plugins.themes.bootstrap3.article.main##

ABDUL RAHIM SALEH
SIKSTUS GUSLI
AMBO ALA
RISMA NESWATI
SRI SUDEWI

Abstract

Abstract. Saleh AR, Gusli S, Ala A, Neswati R, Sudewi S. 2021. Tree density impact on growth, roots length density, and yield in agroforestry based cocoa. Biodiversitas 23: 496-506. Cocoa-based agroforestry systems using langsat trees as shade is aimed to maximize the absorptions of solar energy, water, and nutrients, and increase income sources for farmers. Limited information about interspecific interactions between cocoa and langsat which is needed to improve the performance of agroforestry systems is a challenging idea. We studied the relationship characteristics of cocoa trees as a present shaded effect in the agroforestry system. Compared agroforestry systems were based on ages, namely young and old cocoa agroforestry or YCAF and OCAF, and monoculture systems (Mono) regardless of plant age. On above stony soil, we observed root length density (RLD) of cocoa and langsat fine roots, from under cocoa canopy to three distance levels from the cocoa stem (i.e. at a distance 0.4 m, 1.2 m and, 1.7 m), and four distance depths for all systems (i.e. at a depth 0-10 cm, 10-20 cm, 20-30 cm and, 30-40 cm). Stem diameter, basal area, canopy cover, yield cocoa beans, and convertible products non-cocoa were equivalent to the price of cocoa beans by tree equivalent yield (TEY) formula. Cocoa RLD in the Mono system did not differ from RLD-cocoa in the OCAF system, but both significantly differed with RLD-cocoa in the YCAF system. Shade trees increased tree density in both agroforestry systems, triggering competition in the canopy for sunlight. Expansion of langsat roots that spread closer to the cocoa trunk increased competition for nutrients and water. Both cocoa and langsat roots overlapped, exploring the same area. The yield of cocoa beans harvested by farmers from the YCAF and OCAF systems decreased by 50%. However, the langsat tree and several other species were accounted for 50% of the TEY in the agroforestry system, thereby adding a source of income to farmers is equivalent to the yield of cocoa beans from a monoculture system.

##plugins.themes.bootstrap3.article.details##

References
Ahenkorah Y, Halm B, Appiah M, Akrofi G, & Yirenkyi J. 1987. Twenty year’s results from a shade and fertilizer trial on amazon cocoa (Theobroma cocoa) in Ghana. Experimental Agriculture 23: 31–39.
Almeida AA, Valle RR. 2007. Ecophysiology of the cacao tree. Braz J Plant Physiol 19(4): 425–448. DOI: 10.1590/S1677-04202007000400011
Asare R, Asare RA, Asante WA, Markussen B, RÆbild A. 2017. Influences of shading and fertilization on on-farm yields of cocoa in ghana. Experimental Agriculture, 53(3): 416–431. DOI: 10.1017/S0014479716000466
Asigbaase M, Sjogersten S, Lomax BH, Dawoe E. 2019. Tree diversity and its ecological importance value in organic and conventional cocoa agroforests in Ghana. PLoS ONE 14(1): 1–19.
Baka W, Rianse I, Rianse, U, Abdullah, W, & Zulfikar. (2019). Pattern of palm-based agroforestry the Bugis etnic community in the Regency of Kolaka Indonesia. In The 1st International Conference on Environmental Sciences (ICES2018). IOP Publishing. DOI: 10.1088/1755-1315/314/1/012041
Bertolde FZ, Almeida AAF, Pirovani CP, Gomes FP, Ahnert D, Baligar VC, Valle RR. 2012. Physiological and biochemical responses of Theobroma cacao L. genotypes to flooding. Photosynthetica 50(3): 447–457. DOI: 10.1007/s11099-012-0052-4
Blaser WJ, Oppong J, Yeboah E, Six J. 2017. Shade trees have limited benefits for soil fertility in cocoa agroforests. Agriculture, Ecosystems and Environment, 243: 83–91. DOI: 10.1016/j.agee.2017.04.007
B?asiak A, Andrzej W, ?ukowski A, Su?kowski S, Turski M. 2021. The Effects of Tree and Stand Traits on the Specific Leaf Area in Managed Scots Pine Forests of Different Ages.
Box GE, Cox DR. 1964. An analysis of transformations. Journal of the American Statistical Association 26(2): 211–252. DOI: 10.1080/01621459.1982.10477788
Cannavo P, Sansoulet J, Harmand JM, Siles P, Dreyer E, Vaast P. 2011. Agroforestry associating coffee and Inga densiflora results in complementarity for water uptake and decreases deep drainage in Costa Rica. Agriculture, Ecosystems and Environment 140(1–2): 1–13. DOI: 10.1016/j.agee.2010.11.005
Cornelissen JH. Lavorel C, Garnier E, Díaz S, Buchmann N, Gurvich DE, Poorter H. 2003. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany 51(4): 335–380. DOI: 10.1071/BT02124
Daghela Bisseleua HB, Fotio D, Yede, Missoup AD, Vidal S. 2013. Shade Tree Diversity, Cocoa Pest Damage, Yield Compensating Inputs and Farmers’ Net Returns in West Africa. PLoS ONE 8(3). DOI: 10.1371/journal.pone.0056115
De Almeida AAF, Valle RR. 2007. Ecophysiology of the cacao tree Brazilian Journal of Plant Physiology 19(4): 425–448. DOI: 10.1590/S1677-04202007000400011.
Dewi, E.S,HS, Yudono P, Tarwaca Eka, Putra S. 2020. Physiological and biochemical activities of cherelle wilt on three cocoa clones (Theobroma cacao) under two levels of soil fertilities. Biodiversitas 21(1): 187–194. DOI: 10.13057/biodiv/d210124
Eriksson CP, Holmgren P. 1996. Estimating stone and boulder content in forest soils - Evaluating the potential of surface penetration methods. Catena, 28(1–2): 121–134. DOI: 10.1016/S0341-8162(96)00031-8
Gusli S, Sumeni S, Sabodin R, Muqfi IH, Nur M, Hairiah K, … van Noordwijk M. 2020. Soil organic matter, mitigation of and adaptation to climate change in cocoa-based agroforestry systems. Land 9(9): 1–19. DOI: 10.3390/LAND9090323
INIAP. 2016. Estación Experimental Tropical Pichilingue. Iniap, 1(4): 13–16. Retrieved from www.iniap.gob.ec
Isaac ME, Gordon AM, Thevathasan N, Oppong SK, Quashie-Sam J. 2005. Temporal changes in soil carbon and nitrogen in west African multistrata agroforestry systems: A chronosequence of pools and fluxes. Agroforestry Systems 65(1): 23–31. DOI: 10.1007/s10457-004-4187-6
Isaac ME, Timmer VR, Quashie-Sam SJ. 2007. Shade tree effects in an 8-year-old cocoa agroforestry system: Biomass and nutrient diagnosis of Theobroma cacao by vector analysis. Nutrient Cycling in Agroecosystems 78(2): 155–165. DOI: 10.1007/s10705-006-9081-3
Jagoret P, Michel I, Ngnogué H T, Lachenaud P, Snoeck D, Malézieux E. 2017. Structural characteristics determine productivity in complex cocoa agroforestry systems. Agronomy for Sustainable Development 37(6). DOI: 10.1007/s13593-017-0468-0
Koko LK, Snoeck D, Lekadou TT, Assiri AA. 2013. Cacao-fruit tree intercropping effects on cocoa yield, plant vigour and light interception in Côte d’Ivoire. Agroforestry Systems 87(5): 1043–1052 DOI: 10.1007/s10457-013-9619-8
Kostermans A. 1966. A Monograph of Aglaia, sect. Lansium kosterm (Meliaceae). Herbarium Bogoriense 7(169): 221–282.
Maghfiroh CN, Putra TE, Dewi ES. 2020. Root detection by resistivity imaging and physiological activity with the dead-end trench on three clones of cocoa ( Theobroma cacao ). Biodiversitas 21(6): 2794–2803. DOI: 10.13057/biodiv/d210656
Medina SM, Anase M, Narioka H. 1994. The Use of Agroforestry as a Soil Conservation Strategy in the Philippines. Irrigation Engineering and Rural Planning (27): 49–64. DOI: 10.11408/jierp1982.1994.27_49
Mortimer R, Saj S, David C. 2018. Supporting and regulating ecosystem services in cacao agroforestry systems. Agroforestry Systems, 92(6): 1639–1657. DOI: 10.1007/s10457-017-0113-6
Muellner AN, Pannell CM, Coleman A, Chase MW. 2008. The origin and evolution of Indomalesian, Australasian and Pacific island biotas?: insights from Aglaieae ( Meliaceae , Sapindales ), 1769–1789. DOI: 10.1111/j.1365-2699.2008.01935.x
Niether W, Armengot L, Andres C, Schneider M, Gerold G. 2018. Shade trees and tree pruning alter throughfall and microclimate in cocoa ( Theobroma cacao L .) production systems. Annals of Forest Science, 75. DOI: 10.1007/s13595-018-0723-9
Niether W, Schneidewind U, Fuchs M, Schneider M, Armengot L. 2019. Below- and aboveground production in cocoa monocultures and agroforestry systems. Science of the Total Environment 657: 558–567. DOI: 10.1016/j.scitotenv.2018.12.050
Notaro M, Gary C, Deheuvels O. 2020. Plant diversity and density in cocoa-based agroforestry systems: how farmers’ income is affected in the Dominican Republic. Agroforestry Systems, 7. DOI: 10.1007/s10457-019-00472-7
Nygren P, Leblanc HA, Lu M, Gómez Luciano CA. 2013. Distribution of coarse and fine roots of Theobroma cacao and shade tree Inga edulis in a cocoa plantation. Annals of Forest Science 70(3): 229–239. DOI: 10.1007/s13595-012-0250-z
Pierce LL, Running SW, Walker J. 1994. Regional-scale relationships of leaf area index to specific leaf area and leaf nitrogen content. Ecological Applications 4(2): 313–321. DOI: 10.2307/1941936
Poesen J, Lavee H. 1994. Rock fragments in top soils: significance and processes. Catena, 23(1–2): 1–28. DOI: 10.1016/0341-8162(94)90050-7
Rajab YA, Hölscher D, Leuschner C, Barus H, Tjoa A, Hertel D. 2018. Effects of shade tree cover and diversity on root system structure and dynamics in cacao agroforests: The role of root competition and space partitioning. Plant and Soil 422(1–2):349–369. DOI: 10.1007/s11104-017-3456-x
Rajab YA, Leuschner C, Barus H, Tjoa A, Hertel D. 2016. Cacao cultivation under diverse shade tree cover allows high carbon storage and sequestration without yield losses. PLoS One 11(2): 1–22. DOI: 10.1371/journal.pone.0149949
Ravi V, Suja G, Saravanan R, More SJ. 2021. Advances in Cassava-Based ­ Multiple-Cropping Systems. In Horticultural Reviews (Vol. 48, pp. 153–232). John Wiley & Sons, Inc.
Rudiyansyah, Alimuddin AH, Masriani, Muharini R, Proksch P. 2018. New tetranortriterpenoids, langsatides A and B from the seeds of Lansium domesticum Corr. (Meliaceae). Phytochemistry Letters, 23(November 2017), 90–93. DOI: 10.1016/j.phytol.2017.11.019
Ruf F, Zadi H. 1998. From Deforestation to Reforestation. In Paper presented at the First Sustainable Workshop on Sustainable Cocoa Growing, Panama City, Panama, (p. March 30–April 2, 1998). DOI: 10.1057/9781137343819.0018
Schneider M, Andres C, Trujillo G, Alcon F, Amurrio P, Perez E, … Milz J. 2017. Cocoa and total system yields of organic and conventional agroforestry vs. monoculture systems in a long-term field trial in Bolivia. Experimental Agriculture, 53(3):351–374. DOI: 10.1017/S0014479716000417
Schroth G, da Fonseca G, Harvey C, Gascon C, Vasconcelos H, Izac A. (Eds.). 2004. Agroforestry and Biodiversity Conservation in Tropical Landscapes. Island Press.
Solomon D, Fritzsche F, Lehmann J, Tekalign M, Zech W. 2002. Soil Organic Matter Dynamics in the Subhumid Agroecosystems of the Ethiopian Highlands. Soil Science Society of America Journal, 66(3): 969. DOI: 10.2136/sssaj2002.9690.
Somarriba E, Orozco-Aguilar L, Cerda R, López-Sampson A. 2018. Analysis and design of the shade canopy of cocoa-based agroforestry systems. In Achieving sustainable cultivation of cocoa (pp. 469–500). Burleigh Dodds Science Publishing. DOI: 10.19103/as.2017.0021.29
Stewart JL, Salazar R. 1992. A review of measurement options for multipurpose trees. Agroforestry Systems, 19(2):173–183. DOI: 10.1007/BF00138507
Techavuthiporn C. 2018. Langsat-Lansium domesticum. Exotic Fruits Reference Guide. Elsevier Inc. DOI: 10.1016/B978-0-12-803138-4.00036-8
Valmayor R, Tabora P, Ramirez M, Herrera W, Asencion A. 1984. The natural distribution of the root systems of citrus, lanzones and cacao (19th ed, p. 244). Los Banos: Phil. Agriculturist, U. P. Retrieved from http://scinet.science.ph/union/SearchHoldings/agency_view.php?agency=PCARRD
van Vliet JA, Giller KE. 2017. Mineral Nutrition of Cocoa: A Review. Advances in Agronomy (1st ed, Vol. 141). Elsevier Inc. DOI: 10.1016/bs.agron.2016.10.017
Vanhove W, Vanhoudt N, Van Damme P. 2016. Effect of shade tree planting and soil management on rehabilitation success of a 22-year-old degraded cocoa (Theobroma cacao L.) plantation. Agriculture, Ecosystems and Environment, 219: 14–25. DOI: 10.1016/j.agee.2015.12.005
Wahid H. 2017. Analisis Karakteristik dan Klasifikasi Curah Hujan di Kabupaten Polewali Mandar. Sains, Matematika Dan Teknologi, VI(1): 15–27.
Wang BJ, Zhang W, Ahanbieke P, Gan YW, Xu WL, Li LH, … Li L. 2014. Interspecific interactions alter root length density, root diameter and specific root length in jujube/wheat agroforestry systems. Agroforestry Systems 88(5): 835–850. DOI: 10.1007/s10457-014-9729-y
Yang T, Zhu Y, Duan ZP, Lu WH, Zhang FF, Wan SM, … Li LH. 2020. Root distribution and productivity in a poplar tree + alfalfa silvopastoral system in northwest China’s Xinjiang Province. Agroforestry Systems, 94(3): 997–1010. DOI: 10.1007/s10457-019-00466-5
Zhang W, Ahanbieke P, Wang BJ, Xu WL, Li. H, Christie P, Li L 2013. Root distribution and interactions in jujube tree/wheat agroforestry system. Agroforestry Systems, 87(4):929–939. DOI: 10.1007/s10457-013-9609-x

Most read articles by the same author(s)