Construction of Saccharomyces cerevisiae KEX2-650 gene expression vector and its introduction into Escherichia coli DH5?

##plugins.themes.bootstrap3.article.main##

DENABELA IFTINA ADIBAH
ASRUL MUHAMAD FUAD
SRI BUDIARTI
RIYONA DESVY PRATIWI

Abstract

Abstract. Adibah DI, Fuad AM, Budiarti S, Pratiwi RD. 2022. Construction of Saccharomyces cerevisiae KEX2-650 gene expression vector and its introduction into Escherichia coli DH5?. Biodiversitas 23: 4289-4296. Kex2 (EC 3.4.21.61) is a serine protease that binds Ca2+ molecules and naturally found intracellularly as a transmembrane protein. Kex2 has a unique function, the conversion process of recombinant protein precursor into mature protein. Kex2 from Saccharomyces cerevisiae has similar functions also with furin in mammals (about 47% of sequence similarity). To gain advantage, extracellular Kex2 would be highly favorable for this process. This study aimed to construct recombinant Kex2 that could be produced extracellularly in Pichia pastoris host through pD902-KEX2-699 vector (synthetic) with FLAG-tag and 6 His-tag by removing most of C-terminal region, including transmembrane domain (TMD) from KEX2 gene sequence. Constructed KEX2 is the KEX2-650 variant with TMD deletion and cytoplasmic domain. The recombinant plasmid was constructed through site-directed mutagenesis using FP-Kex2-699 and RP-Kex2-650 primers, including the BamHI site for plasmid religation. PCR site-directed mutagenesis produces an amplicon DNA with an expected length of 5551 bp. After restriction (BamHI) and religation, the plasmid was reintroduced into Escherichia coli DH5? and obtained 16 colonies. Verification PCR target gene showed that clones number 9 produced an amplicon of expected length (646 bp). DNA sequencing analysis confirmed that TMD was removed from the gene construct to form the KEX2-650 construct.

##plugins.themes.bootstrap3.article.details##

References
Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K. 2002. Short protocols in molecular biology. 5th ed. John Wiley & Sons Inc, New York.
Brenner C, Fuller RS. 1992. Structural and enzymatic characterization of a purified prohormone-processing enzyme: secreted, soluble Kex2 protease. Proc Natl Acad Sci USA. 89(3): 922-926. doi:10.1073/pnas.89.3.922.
Bresnahan PA, Leduc R, Thomas L, Thorner J, Gibson HL, Brake AJ, Barr PJ, Thomas G. 1990. Human fur gene encodes a yeast KEX2-like endoprotease that cleaves pro-beta-NGF in vivo. J Cell Biol. 111(6): 2851-2859. doi: 10.1083/jcb.111.6.2851.
Carson S, Miller HB, Srougi MC, Witherow DS. 2019. Molecular biology techniques: a classroom laboratory manual. Academic Press, London.
Fuller RS, Brake AJ, Thorner J. 1989. Yeast prohormone processing enzyme (KEX2 gene product) is a Ca2+ dependent serine protease. Proceedings of the National Academy of Science. 86(5): 1434-1438. doi:10.1073/pnas.86.5.1434.
Germain D, Dumas F, Vernet T, Bourbonnais Y, Thomas DY, Boileau G. 1992. The pro-region of the KEX2 endoprotease of Saccharomyces cerevisiae is removed by self-processing. FEBS Lett. 299(3): 283-286. doi:10.1016/0014-5793(92)80132-z.
Invitrogen™. 2004. Subcloning Efficiency DH5? Competent Cells. Invitrogen Corp, California.
Invitrogen™. 2010. pPICZ? A, B, C Pichia expression vectors for selection on Zeocin™ and purification of recombinant proteins. Invitrogen Corp, California.
Johnston C, Polard P, Claverys JP. 2013. The DpnI/DpnII pneumococcal system, defense against foreign attack without compromising genetic exchange. Mob Genet Elements. 3(4): e25582–1–e25582–8. doi:10.4161/mge.25582.
Kumari L, Amaravathi Y. 2016. Computation of Melting Temperatures (Tm) of oligonucleotides for high throughput PCR using MS-Excel. IOSR Journal of Biotechnology and Biochemistry. 2(6): 6-11. doi: 10.9790/264X-02060611.
Lohman GJS, Zhang Y, Zhelkovsky AM, Cantor EJ, Evans TCJ. 2013. Efficient DNA ligation in DNA– RNA hybrid helices by Chlorella virus DNA ligase. Nucleic Acids Res. 42(3): 1831–1844. doi:10.1093/nar/gkt1032.
Mizuno K, Nakamura T, Ohshima T, Tanaka S, Matsuo H. 1988. Yeast KEX2 gene encodes an endopeptidase homologous to subtilisin-like serine proteases. Biochem Biophys Res Commun. 156: 246-254. doi:10.1016/S0006-291X(88)80832-5.
Rahimzadeh M, Sadeghizadeh M, Najafi F, Arab SS, Mobasheri H. 2016. Impact of heat shock step on bacterial transformation efficiency. Mol Biol Res Commun. 5(4): 257–261. doi:10.22099/MBRC.2016.3915.
Smith C. 2007. Cloning and mutagenesis: tinkering with the order of things. Nature Methods. 4(5):455-461. doi: 10.1038/nmeth0507-455.
van de Ven WJ, Voorberg J, Fontijn R, Pannekoek H, van den Ouweland AM, van Duijnhoven HL, Roebroek AJ, Siezen RJ. 1990. Furin is a subtulisin-like proprotein processing enzyme in higher eukaryotes. Molecular Biology Reports. 14(4): 265-275. doi:10.1007/BF00429896.
Van de Ven WJ, Creemers JW, Roebroek AJ. 1991. Furin: the prototype mammalian subtilisin-like proprotein-processing enzyme. Endoproteolytic cleavage at paired basic residues of proproteins of the eukaryotic secretory pathway. Enzyme. 45(5): 257-270. doi:10.1159/000468900.
Van de Vex WJM, Roebroek AJ, Van Duijnhoven HL. 1993. Structure and function of eukaryotic proprotein processing enzymes of the subtilisin family of serine proteases. Critical Review Oncogen. 4(2): 115-136.
Zhang BZ, Zhang X, An XP, Ran DL, Zhou YS, Lu J, Tong YG. 2009. An easy-to-use site-directed mutagenesis method with a designed restriction site for convenient and reliable mutant screening. Journal of Zhejiang University Science B. 10(6): 479-482. doi: 10.1631/jzus.B0820367.

Most read articles by the same author(s)