Exploration of bacteriophages from waters in Palembang, Indonesia as biocontrol of antibiotic-resistant Escherichia coli

##plugins.themes.bootstrap3.article.main##

RIRI NOVITA SUNARTI
POEDJI LOEKITOWATI HARIANI
SRI BUDIARTI

Abstract

Abstract. Sunarti RN, Hariani PL, Budiarti S. 2023. Exploration of bacteriophages from waters in Palembang, Indonesia as biocontrol of antibiotic-resistant Escherichia coli. Biodiversitas 24: 6069-6081. The emergence and dissemination of antibiotic-resistant bacteria in the aquatic environment demand for utilization of bacteriophage (phage) therapy as an ecologically conscious alternative to mitigate the consequences of drug resistance. The presence of antibiotic-resistant Escherichia coli (E. coli) in the river of Palembang City is a matter of concern for public health. It is imperative to explore the potential of phages as biocontrol agents against antibiotic-resistant E. coli sourced from the rivers of Palembang City. The effectiveness of the phage was then evaluated in managing antibiotic-resistant E. coli in contaminated water. The exploration resulted in the acquisition of 12 phage isolates from various water sources. Specifically, three phage isolates were obtained from Kedukan River (FgSK11.2, FgSK22.2, FgSK31.3); three phage isolates were obtained from Buah River (FgSB13.2, FgSB13.3, FgSB33.1); and six phage isolates were obtained from PU River (FgPU11.2, FgPU11.3, FgPU31.3, FgPU33.1, FgPU33.2, FgPU33.3). The isolates have demonstrated the ability to lyse antibiotic-resistant E. coli bacteria. The findings indicate that bacteriophages can mitigate pollution in collected water samples. The phage cocktail utilized effectively inhibited the growth of antibiotic-resistant E. coli, reducing their population. Furthermore, the treatment resulted in satisfactory water quality improvements by reducing the Fe and Pb levels. The results of this study show a significant advancement in the use of phages as a first step in addressing the problem of E. coli pathogen-caused water pollution in Palembang City.

##plugins.themes.bootstrap3.article.details##

References
Abedon ST, Kuhl SJ, Blasdel BG, Kutter EM. 2011. Phage treatment of human infections. Bacteriophage 1(2): 66-85. DOI: 10.4161/bact.1.2.15845.
Agún S, Fernández L, González-Menéndez E, Martínez B, Rodríguez A, García P. 2018. Study of the interactions between bacteriophage phiIPLA-RODI and four chemical disinfectants for the elimination of Staphylococcus aureus contamination. Viruses 10(3): 103. DOI: 10.3390/v10030103.
Asakura Y, Kobayashi I. 2009. From damaged genome to cell surface: transcriptome changes during bacterial cell death triggered by loss of a restriction-modification gene complex. Nucleic Acids Res 37(9): 3021-3031. DOI: 10.1093/nar/gkp148.
Atterbury RJ, Van Bergenet MA, Ortiz F, Lovell MA, Harris JA, Boer AD, Wagenaar JA, Allen VM, Barrow PA. 2007. Bacteriophage therapy to reduce Salmonella colonization of broiler chickens. Appl Environ Microbiol 73(14): 4543–4549. DOI: 10.1128/AEM.00049-07.
Ayman AE, Yagoub SO, Yousif AS, Abedalkareem EA, El-Hag SM, Elagib AA. 2011. Identification of protein profiles of Escherichia coli, Staphylococcus aureus and their corresponding phages. Am. J. Biotechnol. Mol. Sci. 1: 39-44. DOI: 10.5251/ajbms.2011.1.2.39.44
Bao H, Zhang P, Zhang H, Zhou Y, Zhang L, Wang R. 2015. Bio-control of Salmonella enteritidis in foods using bacteriophages. Viruses 7(8): 4836-4853. DOI: 10.3390/v7082847.
Boyd CE. 2015. Water Quality: An Introduction. Springer, Berlin. DOI: 10.1007/978-3-319-17446-4_15.
Brüssow H. 2016. Targeting the gut to protect the bladder: oral phage therapy approaches against urinary Escherichia coli infections. Environ. Microbiol 18(7): 2084-2088. DOI: 10.1111/1462-2920.13310.
Carey-Smith GV, Billington C, Cornelius AJ, Hudson JA, Heinemann JA. 2006. Isolation and characterization of bacteriophages infecting Salmonella spp. FEMS Microbiol Lett 258(2): 182-186. DOI: 10.1111/j.1574-6968.2006.00217.x.
Chan BK, Abedon ST, Loc-Carrillo C. 2013. Phage cocktails and the future of phage therapy. FutureMicrobiol 8: 769-783. DOI: 10.2217/fmb.13.47.
Chan BK, Sistrom M, Wertz JE. Kortright KE, Naraya D, Turner PE. 2016. Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa. Sci. Rep. 6(26717). DOI: 10.1038/srep26717.
Chan BK, Turner PE, Kim S, Mojibian HR, Elefteriades JA, Narayan D. 2018. Phage treatment of an aortic graft infected with Pseudomonas aeruginosa. Evol Med Public Health 2018(1): 60-66. DOI: 10.1093/emph/eoy005.
Chem B, Park DW, Lim G, Lee Y, Park JH. 2020. Characteristics of lytic phage vB _ EcoM? ECP26 and reduction of shiga toxin producing Escherichia coli on produce romaine. Appl. Biol. Chem. 63(19): 1-9. DOI: 10.1186/s13765-020-00502-4.
Chibani-chennou S, Sidoti J, Bruttin A, Kutter E, Sarker S, Bru?ssow H. 2004. In vitro and in vivo bacteriolytic activities of Escherichia coli phages: implications for phage therapy. Antimicrobial Agents and Chemotherapy 69(9): 5364-5371. DOI: 10.1128/AEM.69.9.5364-5371.2003.
Christine G, Budiarti S, Astuti RI. 2018. Diversity of urinary tract infection bacteria in children in Indonesia based on metagenomics. Biodiversity 19(4): 1375-1381. DOI: 10.13057/biodiv/d190425.
Dalmasso M, Strain R, Neve H, Franz CMAP, Cousin FJ, Ross RP. 2016. Three new Escherichia coli phages from the human gut show promising potential for phage therapy. PLoS ONE 11(6): e0156773. DOI: 10.1371/journal.pone.0156773.
Domingo-Calap P and Delgado-Martínez J. 2018. Bacteriophages: protagonists of a post-antibiotic era. Antibiotics 7: 66. DOI: 10.3390/antibiotics7030066.
El-Daly RA, Ahmed A, Ahmed BB, El-Sayed EH. 2018. Characterization and utilization of lytic bacteriophages for controlling pathogenic Escherichia coli serovars from duckling farms in Egypt. Timur Tengah J Appl. Sains 8(4): 1413-1424.
Foschino R, Perrone F, Galli A. 1995. Characterization of two virulent Lactobacillus fermentum bacteriophages isolated from sourdough. J. Appl. Microbiology 79: 677-683. DOI:10.1111/J.1365-2672.1995.TB00954.X.
Galtier M, De Sordi L, Sivignon A, De Vallée A, Maura D, Neut C, Rahmouni O, Wannerberger K, Darfeuille-Michaud A, Desreumaux P, Barnich N, Debarbieux L. 2017. Bacteriophages targeting adherent invasive Escherichia coli strains as a promising new treatment for Crohn's disease. J Crohns Colitis 11(7): 840-847. DOI: 10.1093/ecco-jcc/jjw224.
Garvey M. 2022. Bacteriophages and food production: biocontrol and bio-preservation options for food safety. Antibiotics 11(10), 1324. DOI: 10.3390/antibiotics11101324.
Gill JJ and Hyman P. 2010. Phage choice, isolation, and preparation for phage therapy. Current Pharmaceutical Biotechnology 11(1): 2-14. DOI: 10.2174/138920110790725311.
Hoyland-Kroghsbo NM, Maerkedahl RB, Lo Svenningsen S. 2013. A quorum-sensing-induced bacteriophage defense mechanism. Mbio 4(1): ARTN e00362-12. DOI: 10.1128/mBio.00362-12.
Jamal M, Hussaina T, Dasb C, Andleeba S. 2015. Inhibition of clinical multi-drug resistant Klebsiella pneumoniae biofilm by Siphoviridae bacteriophage Z. Sci Lett 3(2): 122–6.
Jatmiko YD, Purwanto AP, Ardyati T. 2018. Test of lytic bacteriophage activity from household waste against Salmonella typhi. J. Biodjati 3(2): 36-49. DOI: 10.15575/biodjati.v3i2.3471.
Javed MA, Poshtiban S, Arutyunov D, Evoy S, Szymanski CM. 2013. Bacteriophage receptor binding protein-based assays for the simultaneous detection of Campylobacter jejuni and Campylobacter coli. PLoS ONE 8(7): e69770. DOI: 10.1371/journal.pone.0069770
Kauppinen A, Siponen S, Pitkänen T, Holmfeldt K, Pursiainen A, Torvinen E, Miettinen IT. 2021. Phage biocontrol of Pseudomonas aeruginosa in water. Viruses 13, 928. DOI: 10.3390/v13050928.
Kim KS. 2016. Human Meningitis-Associated Escherichia coli. EcoSal Plus 7(1): 1–15. DOI: 10.1128/ecosalplus.ESP-0015-2015.
Koda E, Miszkowska A, Sieczka A. 2017. Levels of organic pollution indicators in groundwater at the old landfill and waste management site. Applied Sciences 7(6): 1-22. DOI: 10.3390/app7060638.
Kudva IT, Jelacic S, Tarr PI, Youderian P, Hovde CJ. 1999. Biocontrol of Escherichia coli O157 with O157-specific bacteriophages, appl. environ. Microbiol 65, 3767-3773.
Lee DS, Lee SJ, Choe HS. 2018. Community-acquired urinary tract infection by Escherichia coli in the era of antibiotic resistance. Biomed Res Int 2018: 1-4. DOI: 10.1155/2018/7656752.
Leptihn S. 2019. Welcome Back to the Pre-Penicillin Era. Why We Desperately Need New Strategies in the Battle Against Bacterial Pathogens. Infectious Microbes & Diseases 1(2): 33. DOI: 10.1097/IM9.0000000000000009.
Li X, Gonzalez F, Esteves N, Scharf BE, Chen J. 2020. Formation of phage lysis patterns and implications on co-propagation of phages and motile host bacteria. PloS Comput Biol 16(3): e1007236. DOI: 10.1371/journal.pcbi.1007236.
Liao YT, Sallvador A, Harden LA, Liu F, Lavenburg VM, Li RW, Wu VVCH. 2019. Characterization of a lytic bacteriophage as an antimicrobial agent for biocontrol of shiga toxin-producing Escherichia coli O145 strains. Antibiotics 8(2): 74. DOI: 10.3390/antibiotics8020074.
Lindberg HM, McKean KA, Wang IN. 2014. Phage fitness may help predict phage therapy effectiveness. Bacteriophage 4(4): e964081. DOI: 10.4161/21597073.2014.964081.
Lingga R, Budiarti SRI, Rusmana I, Wahyudi ATRI. 2020. Isolation, characterization and effectiveness of lytic bacteriophages against pathogenic Escherichia coli from hospital liquid waste. Biodiversitas 21(7): 3234-3241. DOI: 10.13057/biodiv/d210745.
Litt PK, Jaroni D. 2017. Isolation and physiomorphological characterization of Escherichia coli O157: H7-infecting bacteriophages recovered from beef cattle operations. Int. J. Microbiol. 2017:7013236. DOI: 10.1155/2017/7013236
Liu Y, Zhu M, Fu X. 2021. Escherichia coli causing neonatal meningitis during 2001–2020: a study in eastern China. Int J Gen Med 14: 3007–3016. https://doi.org/10.2147/IJGM.S317299.
Ly-Chatani MH. 2014. The factors affecting effectiveness of treatment in phages therapy. Front. Microbiol 5(51): 1-7. DOI: 10.3389/fmicb.2014.00051.
Mohsen IH, Mohsen AH, Zaidan HK. 2019. Health effects of chlorinated water: the meaning of lucidity. Pak. J. Bioteknol 16(3): 263–267. DOI: 10.34016/pjbt.2019.16.3.24.
Mruk I, Kobayashi I. 2014. To be or not to be: regulation of restriction-modification systems and other toxin-antitoxin systems. Nucleic Acids Res 42(1): 70-86. DOI: 10.1093/nar/gkt711.
Mulani MS, Kamble EE, Kumkar SN, Tawre MS, Pardesi KR. 2019. Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: a review. Front. Microbiol 10: 539. DOI: 10.3389/fmicb.2019.00539.
Necel A, Bloch S, Nejman-Fale?czyk B. 2020. Characterization of a bacteriophage, vB_Eco4M-7, that effectively infects many Escherichia coli O157 strains. Sci Rep 10, 3743. DOI: 10.1038/s41598-020-60568-4.
Oechslin F. 2018. Resistance development to bacteriophages occurring during bacteriophage therapy. Viruses 10(7): 351. DOI: 10.3390/v10070351.
Park DW, Lim GY, Lee YD. Park JH. 2020. Characteristics of lytic phage vB_EcoM-ECP26 and reduction of Shiga-toxin-producing Escherichia coli on produce romaine. Appl Biol Chem 63(19): 1-9. DOI: 10.1186/s13765-020-00502-4.
Park M, J. Lee JH, Shin H, Kim M, Choi J. 2012. Characterization and comparative genomic analysis of a novel bacteriophage, SFP10, simultaneously inhibiting both Salmonella enteric and Escherichia coli O157: H7. Applied Environ. Microbiol 78: 58-69. DOI: 10.1128/AEM.06231-11.
Payus C, Ying TS, Kui WN. 2016. Effect of heavy metal contamination on DNA mutations in Nepenthes plants from abandoned mines. Res. J. Lingkungan Toksikol 10(4): 193-204. DOI: 10.3923/rjet.2016.193.204.
Peng Q, Yuan Y. 2018. Characterization of a newly isolated phage infecting pathogenic Escherichia coli and analysis of its mosaic structural genes. Sci. Rep., 8(1): 1-10. DOI: 10.1038/s41598-018-26004-4.
Pirnay JP, Verbeken G, Ceyssens PJ, Huys I, De Vos D, Ameloot C. 2018. The magistral phage. Viruses 10:64. DOI: 10.3390/v10020064.
Poolman JT, Wacker M. 2016. Extraintestinal pathogenic Escherichia coli, a common human pathogen: challenges for vaccine development and progress in the field. J Infect Dis 213: 1-8. DOI: 10.1093/infdis/jiv429.
Prestinaci F, Pezzotti P, Pantosti A. 2015. Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health 109(7): 309-18. DOI: 10.1179/2047773215Y.0000000030.
Ratnawati E, Rahyani E, Siti N. 2010. Biosorption technology by microorganisms, an alternative solution to reducing heavy metal pollution. Journal of Chemistry and Packaging 32(1): 34-40. http://litbang.kemenperin.go.id/jkk/article/view/2739
Razif M. 2022. BOD, COD, and TSS predictions from DO measurement results for the Surabaya River, Indonesia. Journal of Civil Engineering, Planning, and Design 1(1): 1-7. DOI: 10.31284/j.jcepd.2022.v1i1.3047.
Romero-Calle D, Guimarães BR, Góes-Neto A, Billington C. 2019. Bacteriophages as alternatives to antibiotics in clinical care. Antibiotics (Basel) 8(3): 138. DOI: 10.3390/antibiotics8030138.
Santos SB. 2011. Genomic and proteomic characterization of the broad?host?range Salmonella phage PVP?SE1: creation of a new phage genus. J Virol, 85:11265-11273. DOI: 10.1128/JVI.01769-10
Santos SB, Kropinski AM, Ceyssens PJ, Ackermann HW, Villegas A, Lavigne R, Krylov VN, Carvalho CM, Ferreira EC, Azeredo J. 2011. Genomic and proteomic characterization of the broad-host-range Salmonella phage PVP-SE1: creation of a new phage genus. J Virol 85(21): 11265-73. DOI: 10.1128/JVI.01769-10.
SNI. 2009. Indonesian National Standard (SNI 6989.72:2009);Water and waste water–Section 2:Biochemical Oxygen Demand (BOD) testing methods. National Standardization Agency, Jakarta. http://sispk.bsn.go.id/sni/DetailSNI/8217
SNI. 2019. Indonesian National Standard (SNI6989.2:2009); Water and waste water-Part2: Test method for chemical oxygen demand (COD) with closed reflux spectrophotometrically. National Standardization Agency, Jakarta. http://sispk.bsn.go.id/sni/DetailSNI/7861
SNI. 2004. Indonesian National Standard (SNI06-6989.3:2004); Water and waste water-Part3: Test method for total suspended solids (TSS) gravimetrically. National Standardization Agency, Jakarta. http://sispk.bsn.go.id/sni/DetailSNI/6725
SNI. 2009. Indonesian National Standard (SNI6989.4:2009); Water and waste water-Part4: Method of theassay for iron (Fe) by Atomic Absorption Spectrophotometry (AAS)-flame. National Standardization Agency, Jakarta. http://sispk.bsn.go.id/sni/DetailSNI/7864
SNI. 2005. Indonesian National Standard (SNI06-6989.38:2005); Water and waste water-Part 38: Method of testing the levels of Cadmium (Cd) with an Atomic Absorption Spectrophotometer (AAS) in a carbon furnace. National Standardization Agency, Jakarta. http://sispk.bsn.go.id/sni/DetailSNI/7011
SNI. 2009. Indonesian National Standard (SNI6989.8:2009); Water and waste water-Part8: Method of the assay for Lead (Pb) by Atomic Absorption Spectrophotometry (AAS)–flame. National Standardization Agency, Jakarta.http://sispk.bsn.go.id/sni/DetailSNI/8199
SNI. 2009. Indonesian National Standard (SNI6989.19:2009); Water and waste water–Part19: Method of chloride (Cl-) test by the argentometric method. National Standardization Agency, Jakarta. http://sispk.bsn.go.id/sni/DetailSNI/7862
Srivastava P, Mishra CP, Nath. 2022. Bacteriophages can make a difference in water quality: evidence from a community-based study from North India. Cureus 14(8): e27551. DOI 10.7759/cureus.27551.
Steimle A, Autenrieth IB, Frick JS. 2016. Structure and function: lipid modifications in commensals and pathogens. Int J Med Microbiol 306:290-301. DOI: 10.1016/j.ijmm.2016.03.001.
Sunarti RN, Budiarti S, Verawaty M, Siregar BA, Hariani PL. 2022. Diversity of antibiotic-resistant Escherichia coli from rivers in Palembang City, South Sumatera, Indonesia. AIMS Environmental Science 9(5): 721-734. DOI: 10.3934/envionsci.2022041.
Svircev A, Roach D, Castle A. 2018. Framing the future with bacteriophages in agriculture. Viruses 10(5): 218. DOI: 10.3390/v10050218.
Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, Pulcini C, Kahlmeter G, Kluytmans J, Carmeli Y, Ouellette M, Outterson K, Patel J, Cavaleri M, Cox EM, Houchens CR, Grayson ML, Hansen P, Singh N, Theuretzbacher U, Magrini N. 2018. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 18(3): 318-327. DOI: 10.1016/S1473-3099(17)30753-3.
Vandersteegen , Mattheus W, Ceyssens P-J, Bilocq F, De Vos D, Pirnay J-P. 2011. Microbiological and molecular assessment of bacteriophage ISP for the control of Staphylococcus aureus. PLoS ONE 6(9): e24418. DOI: 10.1371/journal.pone.0024418.
Verawaty M, Apriani N, Tarigan LR, Aprian ET, Laurenta WC, Muharni. 2020. Antibiotics resistant Escherichia coli isolated from aquatic ecosystems in Palembang, South Sumatra, Indonesia. Biodiversitas 21(1), 86-97. DOI: 10.13057/biodiv/d210113.
Von Wintersdorff CJ, Penders J, Van Niekerk JM, Mills ND, Majumder S, Van Alphen LB, Savelkoul PH, Wolffs PF. 2016. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Front Microbiol 7: 173. DOI: 10.3389/fmicb.2016.00173.
Washizaki A, Yonesaki T, Otsuka Y. 2016. Characterization of the interactions between Escherichia coli receptors, LPS and OmpC, and bacteriophage T4 long tail fibres. Microbiol Open 5:1003–1015. DOI: 10.1002/mbo3.384.
Wigand R and Kumel G. 1977. The kinetics of adenovirus infection and spread in cell cultures infected with low multiplicity. Arch. Virol 54: 177-187.
World Health Organization (WHO). 2017. WHO Publishes a List of Bacteria for Which New Antibiotics are Urgently Needed. WHO, Swiss. https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed.
World Health Organization (WHO). 2021. Ten Global Health Issues to Track In 2021. WHO, Swiss. https://www.who.int/news-room/spotlight/10-global-health-issues-to-track-in-2021.
Yulinery T, Triana E, Suharna N, Nurhidayat N. 2019. Isolation and anti-Escherichia coli biofilm activity of lytic bacteriophages isolated from water environment in vitro. IOP Conf. Ser.: Earth Environ. Sci. 308 012010. DOI: 10.1088/1755-1315/308/1/012010.
Zachary JS, Teel MR, Mercurio K, Sauvageau D. 2020. The virulence index: a metric for quantitative analysis of phage virulence. Phage 1(1): 27-36. DOI: 10.1089/phage.2019.0001.
Zhang J, Li Z, Cao Z, Wang L, Li X, Li S, Xu Y. 2015. Bacteriophages as antimicrobial agents against major pathogens in swine?: a review. Journal of Animal Science and Biotechnology 6(36): 1-7. DOI: 10.1186/s40104-015-0039-7.
Zou X, Xiao X, Mo Z. 2022. Systematic strategies for developing phage-resistant Escherichia coli strains. Nat Commun 13: 4491. DOI: 10.1038/s41467-022-31934-9.

Most read articles by the same author(s)