Diversity and abundance of plankton community in Tawang and Prigi Bays, natural settlement habitats of Spiny Lobster larvae in East Java, Indonesia

##plugins.themes.bootstrap3.article.main##

ENDANG DEWI MASITHAH
MUHAMMAD GIANO FADHILAH
MUHAMAD AMIN
KURNIATI UMRAH NUR
LAILA MUSDALIFAH
SHIFANIA HANIFA SAMARA
YUDI CAHYOKO
ALIMUDDIN
SAHRUL ALIM
BAGUS DWI HARI SETYONO

Abstract

Abstract. Masithah ED, Fadhilah MG, Amin M, Nur KU, Musdalifah L, Samara SH, Cahyoko Y, Alimuddin, Alim S, Setyono BDH. 2023. Diversity and abundance of plankton community in Prigi and Tawang Bays, natural settlement habitats of Spiny Lobster larvae in East Java, Indonesia. Biodiversitas 24: 1642-1649. Prigi and Tawang Bays have been well-known as settlement areas for spiny lobster larvae, Panulirus spp., in East Java, Indonesia. These locations may suggest suitable environments including diet availability for lobster larvae. Therefore, the present study aimed to investigate the type and abundance of plankton in both locations to discover potential live diets for lobster larvae. This study also explored plankton’s diversity, uniformity, and dominance indices in both locations. Plankton samples in each location were collected using a plankton net at four depths: 0.3 m, 2.5 m, 5 m, and 20 m with three replicates. The results revealed that 17 plankton species were identified from 0.30 m depth, 13 at 2.5 m, 11 at 5 m, and 13 at 20 m depth at Prigi Bay. In addition, 17 plankton species were discovered at 0.3 m depth, 11 at 2.5 m, 12 at 5 m, and 12 at 20 m at Tawang Bay. Among the most abundant species were Acartia sp., Calanus sp., Paracyclopina sp., and Oithona sp. The diversity indices observed in Karanggongso of Prigi Bay and Tawang Bay ranged from 2.02-2.49 and 2.17-2.65, respectively, within the moderate range. Similarly, the uniformity indices observed at both locations were moderate, ranging from 0.38-0.45 at Prigi Bay and 0.41-0.46 at Tawang Bay. There were no dominant species at both locations, as the dominance index values ranged from 0.13-0.30. Among the identified plankton species, Oithona sp., Calanus sp., Paracyclopina sp., and Acartia sp. are considered potential live feed for lobster larvae, and thus should be further studied.

##plugins.themes.bootstrap3.article.details##

References
Amin M, Fitria A, Muslichah NA, Musdalifah L. 2022a. The Ecological Habitat of Spiny Lobster (Panulirus spp.): Case Study on Lobster Fishing Ground in Trenggalek, East Java, Indonesia. IOP Conference Series: Earth and Environmental Science.
Amin M, Harlyan LI, Khamad K, Diantari R. 2022b. Profiling the natural settlement habitat of spiny lobster, Panulirus spp. to determine potential diets and rearing conditions in a lobster hatchery. Biodivers. J., 23(6). DOI: 10.13057/biodiv/d230615.
Amin M, Harlyan LI, Khamad K, Diantari R. 2022c. Profiling the natural settlement habitat of spiny lobster, Panulirus spp. to determine potential diets and rearing conditions in a lobster hatchery. Biodiversitas Journal of Biological Diversity, 23(6).
Amin M, Taha H, Samara SH, Fitria A, Muslichah NA, Musdalifah L, Odeyemi OA, Alimuddin A, Arai T. 2022d. Revealing diets of wild-caught ornate spiny lobster, Panulirus ornatus, at puerulus, post-puerulus and juvenile stages using environmental DNA (eDNA) metabarcoding. Aquaculture Reports, 27: 101361. 10.1016/j.aqrep.2022.101361.
Awwaluddin A, Suwarso S, Setiawan R. 2017. Distribusi Kelimpahan dan Struktur Komunitas Plankton pada Musim Timur di Perairan Teluk Tomini. Jurnal Penelitian Perikanan Indonesia, 11(6): 33-56.
Badan Pusat Statistik Indonesia (BPS). 2020. Distribusi PDB Triwulanan Seri 2010 Atas Dasar Harga Berlaku (Persen).2020. Jakarta Pusat : Badan Pusat Statistik.
Barroso M, De Carvalho C, Antoniassi R, Cerqueira V. 2013. Use of the copepod Acartia tonsa as the first live food for larvae of the fat snook Centropomus parallelus. Aquaculture, 388: 153-158.
Berger WH, Parker FL. 1970. Diversity of planktonic foraminifera in deep-sea sediments. Science, 168(3937): 1345-1347.
Boudreau B, Simard Y, Bourget E. 1992. Influence of a thermocline on vertical distribution and settlement of post-larvae of the American lobster Homarus americanus Milne-Edwards. Journal of Experimental Marine Biology and Ecology, 162(1): 35-49.
Dinesh Kumar S, Santhanam P, Ananth S, Kaviyarasan M, Nithya P, Dhanalakshmi B, Park MS, Kim M-K. 2017. Evaluation of suitability of wastewater-grown microalgae (Picochlorum maculatum) and copepod (Oithona rigida) as live feed for white leg shrimp Litopenaeus vannamei post-larvae. Aquaculture International, 25: 393-411.
Fachrul MF. 2012. Metode sampling bioekologi.
Ihsan M, Jayadi EM, Sagista R, Hardianti YE, Ilahi WB, Muliasari H, Kalih LATWS. 2019. Analisis makanan alami dalam lambung dan mikrohabitat lobster pasir (Panulirus homarus) fase puerulus di teluk awang. Jurnal Riset Akuakultur, 14(3): 183-191.
Kashinskaya E, Simonov E, Kabilov M, Izvekova G, Andree K, Solovyev M. 2018. Diet and other environmental factors shape the bacterial communities of fish gut in an eutrophic lake. Journal of applied microbiology, 125(6): 1626-1641.
Keulder FJ. 2005. Puerulus and early juvenile recruitment of the rock lobster Jasus lalandii in relation to the environment at Lüderitz Bay, Namibia Rhodes University].
Khvorov S, Piontkovski S, Popova E. 2012. Spatial-temporal distribution of the Palinurid and Scyllarid Phyllosoma larvae in Oman Coastal Waters. Journal of Agricultural and Marine Sciences [JAMS], 17: 53-60.
LeGresley M, McDermott G. 2010. Counting chamber methods for quantitative phytoplankton analysis-haemocytometer, Palmer-Maloney cell and Sedgewick-Rafter cell. UNESCO (IOC manuals and guides): 25-30.
Lillis A, Snelgrove PV. 2010. Near-bottom hydrodynamic effects on postlarval settlement in the American lobster Homarus americanus. Marine Ecology Progress Series, 401: 161-172.
Magouz FI, Essa M, El-Shafei A, Mansour A, Mahmoud S, Ashour M. 2021a. Effect of extended feeding with live copepods, Oithona nana, and Artemia franciscana on the growth performance, intestine histology, and economic viability of european seabass (Dicentrarchus labrax) postlarvae. Fresenius Environ. Bull, 30: 7106-7116.
Magouz FI, Essa MA, Matter M, Tageldein Mansour A, Alkafafy M, Ashour M. 2021b. Population dynamics, fecundity and fatty acid composition of Oithona nana (Cyclopoida, Copepoda), fed on different diets. Animals, 11(5): 1188.
Mazzocchi M, Zagami G, Guglielmo L, Crescenti N, Hure J. 2012. Atlas of Marine Zooplankton Straits of Magellan: Copepods. Springer Science & Business Media.
Nugroho LA, Piranti AS, Sastranegara MH. 2020. Plankton community and water quality during maximum tidal range in Segara Anakan Cilacap. IOP Conference Series: Earth and Environmental Science.
O’Rorke R, Lavery S, Wang M, Nodder S, Jeffs A. 2014. Determining the diet of larvae of the red rock lobster (Jasus edwardsii) using high-throughput DNA sequencing techniques. Marine Biology, 161(3): 551-563.
Rajkumar M. 2006. Suitability of the copepod, Acartia clausi as a live feed for Seabass larvae (Lates calcarifer Bloch): Compared to traditional live-food organisms with special emphasis on the nutritional value. Aquaculture, 261(2): 649-658.
Raza'i TS, Putra IP, Suhud MA, Firdaus M. 2018. Kelimpahan Kopepoda (Copepods) sebagai Stok Pakan Alami di Perairan Desa Pengudang, Bintan. Intek Akuakultur, 2(1): 63-70.
Santanumurti M, Samara S, Wiratama A, Putri B, Hudaidah S. 2021. The effect of fishmeal on the density and growth of Oithona sp.(Claus, 1866). IOP Conference Series: Earth and Environmental Science.
Sarkisian BL, Lemus JT, Apeitos A, Blaylock RB, Saillant EA. 2019. An intensive, large-scale batch culture system to produce the calanoid copepod, Acartia tonsa. Aquaculture, 501: 272-278.
Trijoko T, Pasaribu DU. 2004. Inventarisasi Zooplankton untuk Pakan Alami Larva Udang Karang (Panulirus homarus L.) Di Teluk Wedi Ombo, Gunung Kidul, Yogyakarta.
Ulfah M, Fajri S, Nasir M, Hamsah K, Purnawan S. 2019. Diversity, evenness and dominance index reef fish in Krueng Raya Water, Aceh Besar. IOP Conference Series: Earth and Environmental Science.
Vanacor-Barroso M, Carvalho CVAd, Antoniassi R, Ronzani-Cerqueira V. 2017. The copepod Acartia tonsa as live feed for fat snook (Centropomus parallelus) larvae from notochord flexion to advanced metamorphosis. Latin american journal of aquatic research, 45(1): 159-166.

Most read articles by the same author(s)

1 2 > >>