Sequence and expression analysis of glucokinase mRNA from herbivorous Giant gourami (Osphronemus goramy)

##plugins.themes.bootstrap3.article.main##

DIAN NOVITA SARI
https://orcid.org/0000-0002-5903-8519
HASAN NASRULLAH
https://orcid.org/0000-0002-2917-3082
JULIE EKASARI
https://orcid.org/0000-0002-6179-7629
MUHAMMAD AGUS SUPRAYUDI
https://orcid.org/0000-0003-1164-9502
ALIMUDDIN ALIMUDDIN
https://orcid.org/0000-0002-8252-9148

Abstract

Abstract. Sari DN, Nasrullah H, Ekasari J, Suprayudi MA, Alimuddin A. 2021. Sequence and expression analysis of glucokinase mRNA from herbivorous Giant gourami (Osphronemus goramy). Biodiversitas 22: 741-750. Glucokinase (GCK) is one of the enzymes that play important roles in carbohydrate metabolism and high glucose homeostatic in fish. The information about the GCK mRNA sequence and its expression is limited in Giant gourami, one of the most important herbivorous aquaculture species in Indonesia. The present study aimed to characterize the GCK mRNA and analyze its mRNA expression and plasma glucose levels after high glucose injection in Giant gourami. We also compared its sequence variability among carnivorous and herbivorous fish. The GCK mRNA was identified using polymerase chain reaction (PCR) method from the fish liver. Its mRNA level was analyzed by real-time PCR (qPCR). Giant gourami GCK mRNA sequence was 2104 nucleotide long, encoding 478 amino acids, and shared high similarity with other fish. GCK was mainly expressed in the liver. The mRNA level of GCK was highly up-regulated after 6 hours of high glucose injection, in-line with the plasma glucose in the blood. There are no major differences observed in the GCK amino acid sequences among Giant gourami and other fish. The knowledge gained from this study could be used as a reference for further exploration of metabolic regulation in Giant gourami.

##plugins.themes.bootstrap3.article.details##

References
Arifin OZ, Prakoso VA, Subagja J, Kristanto AH, Pouil S, Slembrouck J. 2019. Effects of stocking density on survival, food intake and growth of giant gourami (Osphronemus goramy) larvae reared in a recirculating aquaculture system. Aquaculture. 509 (February): 159–166. DOI: 10.1016/j.aquaculture.2019.05.010.
Blasco J, Marimón I, Viaplana I, Fernández-Borrás J. 2001. Fate of plasma glucose in tissues of brown trout in vivo: Effects of fasting and glucose loading. Fish Physiol. Biochem. 24 (3): 247–258. DOI: 10.1023/A:1014084313207.
Chen YJ, Wang XY, Pi RR, Feng JY, Luo L, Lin SM, Wang DS. 2018. Preproinsulin expression, insulin release, and hepatic glucose metabolism after a glucose load in the omnivorous GIFT tilapia Oreochromis niloticus. Aquaculture. 482 (August 2017): 183–192. DOI: 10.1016/j.aquaculture.2017.10.001.
Coutinho JJ de O, Neira LM, de Sandre LCG, da Costa JI, Martins MIEG, Portella MC, Carneiro DJ. 2018. Carbohydrate-to-lipid ratio in extruded diets for Nile tilapia farmed in net cages. Aquaculture. 497 (February): 520–525. DOI: 10.1016/j.aquaculture.2018.08.014.
Enes P, Peres H, Couto A, Oliva-Teles A. 2010. Growth performance and metabolic utilization of diets including starch, dextrin, maltose or glucose as carbohydrate source by gilthead sea bream (Sparus aurata) juveniles. Fish Physiol. Biochem. 36 (4): 903–910. DOI: 10.1007/s10695-009-9366-y.
Enes P, Peres H, Pousão-Ferreira P, Sanchez-Gurmaches J, Navarro I, Gutiérrez J, Oliva-Teles A. 2012. Glycemic and insulin responses in white sea bream Diplodus sargus, after intraperitoneal administration of glucose. Fish Physiol. Biochem. 38 (3): 645–652. DOI: 10.1007/s10695-011-9546-4.
Fukada H, Murashita K, Furutani T, Masumoto T. 2012. Yellowtail insulin-like growth factor 1: molecular cloning and response to various nutritional conditions. Domest. Anim. Endocrinol. 42(4):220–229.
Irwin DM, Tan H. 2014. Molecular Phylogenetics and Evolution of glucose utilization?: Glucokinase and glucokinase regulator protein. Mol. Phylogenet. Evol. 70: 195–203. DOI: 10.1016/j.ympev.2013.09.016.
Ismail SN, Abd Hamid M, Mansor M. 2018. Ecological correlation between aquatic vegetation and freshwater fish populations in Perak river, Malaysia. Biodiversitas. 19 (1): 279–284. DOI: 10.13057/biodiv/d190138.
Li JN, Xu QY, Wang CA, Wang LS, Zhao ZG, Luo L. 2016b. Effects of dietary glucose and starch levels on the growth, haematological indices and hepatic hexokinase and glucokinase mRNA expression of juvenile mirror carp (Cyprinus carpio). Aquac. Nutr. 22 (3): 550–558. DOI: 10.1111/anu.12278.
Li R, Liu H, Dong X, Chi S, Yang Q, Zhang S, Tan B. 2018. Molecular characterization and expression analysis of glucose transporter 1 and hepatic glycolytic enzymes activities from herbivorous fish Ctenopharyngodon idellus in respond to a glucose load after the adaptation to dietary carbohydrate levels. Aquaculture. 492 (February): 290–299. DOI: 10.1016/j.aquaculture.2018.04.028.
Li XF, Xu C, Zhang DD, Jiang GZ, Liu W Bin. 2016a. Molecular characterization and expression analysis of glucokinase from herbivorous fish Megalobrama amblycephala subjected to a glucose load after the adaption to dietary carbohydrate levels. Aquaculture. 459: 89–98.DOI: 10.1016/j.aquaculture.2016.03.035.
Livak K, Schmittgen T. 2001. Analysis of relative gene expression data using real- time quantitative PCR and the 2-??CT Method. Methods. 24: 402–408. DOI: 10.1006/meth.2001.1262.
Mahalingam B, Cuesta-munoz A, Davis EA, Matschinsky FM, Harrison RW, We IT. 1999. Implications for the mutants that cause hypo- and hyperglycemia. Diabetes. 48: 1698–1705.
Matschinsky FM. 2002. Regulation of pancreatic ?-cell glucokinase. Diabetes. 51 (suppl 3): S394–S404.
Mokoginta I, Takeuchi T, Hadadi A, Dedi J. 2004. Different capabilities in utilizing dietary carbohydrate by fingerling and subadult giant gouramy Osphronemus gouramy. Fish. Sci. 70 (6): 996–1002.
Moon TW. 2001. Glucose intolerance in teleost fish: Fact or fiction? Comp. Biochem. Physiol. - B Biochem. Mol. Biol. 129 (2–3): 243–249. DOI: 10.1016/S1096-4959(01)00316-5.
Nasrullah H, Nababan YI, Yanti DH, Hardiantho D, Nuryati S, Junior MZ, Ekasari J, Alimuddin A. 2019. Identification and expression analysis of c-type and g-type lysozymes genes after Aeromonas hydrophila infection in African catfish. J. Akuakultur Indones. 18 (2): 110–119. DOI: 10.19027/jai.18.2.110-119.
Nie Q, Miao H, Miao S, Zhou H, Zhang Y, Zhang W, Mai K. 2015. Effects of dietary glucose and dextrin on activity and gene expression of glucokinase and fructose-1,6-bisphosphatase in liver of turbot Scophthalmus maximus. Fish Physiol. Biochem. 41 (3): 819–832. DOI: 10.1007/s10695-015-0049-6.
Panserat S, Blin C, Médale F, Plagnes-Juan E, Brèque J, Krishnamoorthy J, Kaushik S. 2000. Molecular cloning, tissue distribution and sequence analysis of complete glucokinase cDNAs from gilthead seabream Sparus aurata, rainbow trout Oncorhynchus mykiss and common carp Cyprinus carpio. Biochim. Biophys. Acta - Gen. Subj. 1474 (1): 61–69. DOI: 10.1016/S0304-4165(99)00213-5.
Panserat S, Capilla E, Gutierrez J, Frappart PO, Vachot C, Plagnes-Juan E, Aguirre P, Brèque J, Kaushik S. 2001. Glucokinase is highly induced and glucose-6-phosphatase poorly repressed in liver of rainbow trout (Oncorhynchus mykiss) by a single meal with glucose. Comp. Biochem. Physiol. - B Biochem. Mol. Biol. 128:275–283. DOI: 10.1016/S1096-4959(00)00322-5.
Panserat S, Rideau N, Polakof S. 2014. Nutritional regulation of glucokinase: A cross-species story. Nutr. Res. Rev. 27 (1): 21–47. DOI: 10.1017/S0954422414000018.
Peres H, Gonçalves P, Oliva-Teles A. 1999. Glucose tolerance in gilthead seabream (Sparus aurata) and European seabass (Dicentrarchus labrax). Aquaculture. 179 (1–4): 415–423. DOI: 10.1016/S0044-8486(99)00175-1.
Polakof S, Mommsen TP, Soengas JL. 2011. Glucosensing and glucose homeostasis: From fish to mammals. Comp. Biochem. Physiol. - B Biochem. Mol. Biol. 160 (4) :123–149.
Polakof S, Panserat S, Soengas JL, Moon TW. 2012. Glucose metabolism in fish: a review. J. Comp. Physiol. B. 182: 1015–45. DOI: 10.1007/s00360-012-0658-7.
Prisingkorn W, Prathomya P, Jakovli? I, Liu H, Zhao YH, Wang WM. 2017. Transcriptomics, metabolomics and histology indicate that high-carbohydrate diet negatively affects the liver health of blunt snout bream (Megalobrama amblycephala). BMC Genomics. 18 (1): 1–15. DOI: 10.1186/s12864-017-4246-9.
Setijaningsih L, Arifin ZO, Gustiano R. 2007. Characterization of three strain giant gouramy (Osphronemus gouramy Lac.) based on truss morphometrics method. J. Iktiologi Indones. 7 (1): 23–30.
Slembrouck J, Arifin OZ, Pouil S, Subagja J, Yani A, Kristanto AH, Legendre M. 2019. Gender identification in farmed giant gourami (Osphronemus goramy): A methodology for better broodstock management. Aquaculture. 498 (January): 388–395. DOI: 10.1016/j.aquaculture.2018.08.056.
Soengas L, Polakof S, Chen X, Sangiao-alvarellos S, Moon TW, Polakof S, Chen X, Sangiao- S, Glucokinase TWM. 2006. Glucokinase and hexokinase expression and activities in rainbow trout tissues: changes with food deprivation and refeeding. Am. J. Physiol. - Regul. Integr. Comp. Physiol. 291: R810–R821. DOI: 10.1152/ajpregu.00115.2006.
Temesgen M, Retta N. 2015. Nutritional potential, health and food security benefits of taro Colocasia Esculenta (L.): A Review. Open Food Sci. J. 1–20.
Velho G, Froguel P, Gloyn A. 2004. Maturity Onset Diabetes of the Young Type 2. In: Glucokinase and Glycemic Disease: From Basics to Novel Therapeutics. Front Diabetes. Basel, Karger. hlm. 42–64.
Wang B, Liu W, Xu C, Cao X, Zhong X, Shi H, Li X. 2017. Dietary carbohydrate levels and lipid sources modulate the growth performance, fatty acid profiles and intermediary metabolism of blunt snout bream Megalobrama amblycephala in an interactive pattern. Aquaculture. 481 (June): 140–153. DOI: 10.1016/j.aquaculture.2017.08.034.
Wedemeyer G, Yasutake W. 1977. Clinical Methods for the Assessment of the Effects of Environmental Stress on Fish Health. Washington DC.
Zhou C, Heizhao L, Huang Z, Jun W, Yun W, Yu W. 2018. Molecular characterization, expression and activity of glucokinase in golden pompano, Trachinotus ovatus: Response of its expression to carbohydrate in the diet. Aquaculture. 485: 124–130. DOI: 10.1016/j.aquaculture.2017.11.035.

Most read articles by the same author(s)