Short Communication: Single nucleotide polymorphism in C-type lysozyme gene and its correlation with Aeromonas hydrophila resistance in African catfish Clarias gariepinus

##plugins.themes.bootstrap3.article.main##

HASAN NASRULLAH
YANTI INNEKE NABABAN
IKA SAFITRI
DWI HANI YANTI
SRI NURYATI
MUHAMMAD ZAIRIN JUNIOR
ALIMUDDIN ALIMUDDIN
http://orcid.org/0000-0002-8252-9148

Abstract

Abstract. Authors. 2020. Short Communication: Single nucleotide polymorphism in C-type lysozyme gene and its correlation with Aeromonas hydrophila resistance in African catfish Clarias gariepinus. Biodiversitas 21: 311-317. The chicken-type lysozyme (LYSC) gene has been demonstrated to play important roles in the fish protection system against bacterial infection. In this present study, we aimed to identify the single nucleotide polymorphism (SNP) within the LYSC gene of African catfish Clarias gariepinus and its possible association with Aeromonas hydrophila resistance, a major pathogenic bacterium in African catfish. The gDNA of the African catfish LYSC coding sequence was 1559 bp long, comprising of four exons and three introns. Six SNPs were identified in African catfish LYSC, namely SNP1-6. After the A. hydrophila challenge, we regarded the surviving individuals after the infection as the resistant group and the dead fish as the susceptible group. High-resolution melting (HRM) analysis on SNP2 revealed that the allele frequencies of TT, CC, and TC were of 27.78%, 5.55%, and 66.67% in the resistant group, while the frequencies of TT, CC, and TC were 16.67%, 27.78%, and 55.55% in the susceptible group, respectively. The expression of LYSC and other immune-genes in the resistant group was also higher in the liver, head kidney, and spleen. These results indicated that the LYSC gene might play an essential role in bacterial resistance, and the SNP2 within the LYSC gene may be associated with the resistance to A. hydrophila in African catfish.

##plugins.themes.bootstrap3.article.details##

References
Angka SL, Lam TJ, Sin YM. 1995. Some virulence characteristics of Aeromonas hydrophila in walking catfish (Clarias gariepinus). Aquaculture. 130(2–3):103–112.doi:10.1016/0044-8486(94)00216-B.
Buonocore F, Randelli E, Trisolino P, Facchiano A, de Pascale D, Scapigliati G. 2014. Molecular characterization, gene structure and antibacterial activity of a g-type lysozyme from the European sea bass (Dicentrarchus labrax L.). Mol. Immunol. 62(1):10–18.doi:10.1016/j.molimm.2014.05.009.
Callewaert L, Michiels CW. 2010. Lysozymes in the animal kingdom. J Biosci. 35(1):127–160.doi:10.1007/s12038-010-0015-5.
Dauda AB, Natrah I, Karim M, Kamarudin MS, Bichi A u H. 2018. African Catfish Aquaculture in Malaysia and Nigeria?: Status , Trends and African Catfish Aquaculture in Malaysia and Nigeria?: Status , Trends and Prospects. Fish. Aquac. J. 9(1):1–5.doi:10.4172/2150-3508.1000237.
Dettleff P, Bravo C, Patel A, Martinez V. 2015. Patterns of Piscirickettsia salmonis load in susceptible and resistant families of Salmo salar. Fish Shellfish Immunol. 45(1):67–71.doi:10.1016/j.fsi.2015.03.039.
Ekasari J, Suprayudi MA, Wiyoto W, Hazanah RF, Lenggara GS, Sulistiani R, Alkahfi M, Zairin M. 2016. Biofloc technology application in African catfish fingerling production: The effects on the reproductive performance of broodstock and the quality of eggs and larvae. Aquaculture. 464:349–356.doi:10.1016/j.aquaculture.2016.07.013.
Di Falco F, Cammarata M, Vizzini A. 2017. Molecular characterisation, evolution and expression analysis of g-type lysozymes in Ciona intestinalis. Dev. Comp. Immunol. 67:457–463.doi:10.1016/j.dci.2016.09.010.
Fu GH, Bai ZY, Xia JH, Liu F, Liu P, Yue GH. 2013. Analysis of Two Lysozyme Genes and Antimicrobial Functions of Their Recombinant Proteins in Asian Seabass. 8(11):1–12.doi:10.1371/journal.pone.0079743.
Hanson LA, Liles MR, Hossain MJ, Griffin MJ, William G. 2014. Motile Aeromonas Septicemia. In: American Fisheries Society-Fish Health Section. Blue Book. Maryland: Bethesda.
Hikima J, Hirono I, Aoki T. 2000. Molecular Cloning and Novel Repeated Sequences of a C-type Lysozyme Gene in Japanese Flounder (Paralichthys olivaceus). :241–247.doi:10.1007/s101269900028.
Liu J, Zhou N, Fu R, Cao D, Si Y, Li A, Zhao H, Zhang Q, Yu H. 2017. The polymorphism of chicken-type lysozyme gene in Japanese flounder (Paralichthys olivaceus) and its association with resistance/ susceptibility to Listonella anguillarum. Fish Shellfish Immunol. 66:43–49.doi:10.1016/j.fsi.2017.05.010.
Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-??CT method. Methods. 25(4):402–408.doi:10.1006/meth.2001.1262.
Mohanty BR, Sahoo PK. 2010. Immune responses and expression profiles of some immune-related genes in Indian major carp, Labeo rohita to Edwardsiella tarda infection. Fish Shellfish Immunol. 28(4):613–621.doi:10.1016/j.fsi.2009.12.025.
Nasrullah H, Nababan YI, Yanti DH, Hadiantho D, Nuryati S, Zairin Jr M, Eksari J, Alimuddin A. 2019. Identification and expression analysis of c-type and g-type lysozymes genes after Aeromonas hydrophila infection in African catfish. J. Akuakultur Indonesia. 18(2):1–10.doi:10.19027/jai.18.2.1-10.
Pridgeon JW, Klesius PH, Dominowski PJ, Yancey RJ, Kievit MS. 2013. Chicken-type lysozyme in channel catfish: Expression analysis, lysozyme activity, and efficacy as immunostimulant against Aeromonas hydrophila infection. Fish Shellfish Immunol. 35(3):680–688.doi:10.1016/j.fsi.2013.05.018.
Saurabh S, Sahoo PK. 2008. Lysozyme: An important defence molecule of fish innate immune system. Aquac. Res. 39(3):223–239.doi:10.1111/j.1365-2109.2007.01883.x.
Shoko AP, Limbu SM, Mgaya YD. 2016. Effect of stocking density on growth performance, survival, production, and financial benefits of African sharptooth catfish (Clarias gariepinus) monoculture in earthen ponds. J. Appl. Aquac. 28(3):220–234.doi:10.1080/10454438.2016.1188338.
Tort L. 2011. Stress and immune modulation in fish. Dev. Comp. Immunol. 35(12):1366–1375.doi:10.1016/j.dci.2011.07.002.
Wang M, Zhao X, Kong X, Wang L, Jiao D, Zhang H. 2016. Molecular characterization and expressing analysis of the c-type and g-type lysozymes in Qihe crucian carp Carassius auratus. Fish Shellfish Immunol. 52:210–220.doi:10.1016/j.fsi.2016.03.040.
Wang R, Feng J, Li C, Liu S, Zhang Y, Liu Z. 2013. Four lysozymes (one c-type and three g-type) in catfish are drastically butdifferentially induced after bacterial infection. Fish Shellfish Immunol. 35(1):136–145.doi:10.1016/j.fsi.2013.04.014.
Wei S, Huang Y, Huang X, Cai J, Wei J, Li P, Ouyang Z, Qin Q. 2014. Molecular cloning and characterization of a new G-type lysozyme gene (Ec-lysG) in orange-spotted grouper, Epinephelus coioides. Dev. Comp. Immunol. 46(2):401–412.doi:10.1016/j.dci.2014.05.006.
Yarahmadi P, Miandare HK, Fayaz S, Caipang CMA. 2016. Increased stocking density causes changes in expression of selected stress- and immune-related genes, humoral innate immune parameters and stress responses of rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol. 48:43–53.doi:10.1016/j.fsi.2015.11.007.
Zhang S, Xu Q, Boscari E, Du H, Qi Z, Li Y, Huang J, Di J, Yue H, Li C, et al. 2018. Characterization and expression analysis of g- and c-type lysozymes in Dabry’s sturgeon (Acipenser dabryanus). Fish Shellfish Immunol. 76:260–265.doi:10.1016/j.fsi.2018.03.006.

Most read articles by the same author(s)