Implementation of the Pelagic Hotspot Index in detecting the habitat suitability area for bigeye tuna (Thunnus obesus) in the eastern Indian Ocean

##plugins.themes.bootstrap3.article.main##

ZABHIKA DINDA ISTNAENI
JONSON LUMBAN GAOL
MUKTI ZAINUDDIN
DEVI FITRIANAH

Abstract

Abstract. Istnaeni ZD, Gaol JL, Zainuddin M, Fitrianah D. 2023. Implementation of the Pelagic Hotspot Index in detecting the habitat suitability area for bigeye tuna (Thunnus obesus) in the eastern Indian Ocean. Biodiversitas 24: 5044-5056. Bigeye tuna (Thunnus obesus Lowe, 1839) is a species with a high economic value that can migrate horizontally and vertically over a large area. Although sea temperature has been the main focus of previous findings, other variables can serve as a reasonable proxy. Here we used sea surface chlorophyll-a, sea surface height, subsurface sea salinity, and subsurface temperature to predict the suitable habitat area for bigeye tuna in the Eastern Indian Ocean Off Java. A Generalized Additive Model was performed to analyze the best-fit model evaluated from the p-value and Cumulative Deviance Explained. The suitability index of the selected model was calculated using Pelagic Hotspot Index constructed from multi-spectrum satellite data. The results showed that the high catches were located on the high suitable index value and supported by chlorophyll-a as the most significant factor, followed by sea surface height, temperature, and salinity. This condition was stimulated by the high feeding opportunity, which may relate to the EIO's oceanic front, eddies, and specific current patterns. This study helps identify ecological hotspots, track the migration, and monitor the seasonal closure for bigeye tuna, particularly in EIO.

##plugins.themes.bootstrap3.article.details##

References
Arrate IA, Fraile I, Marsac, Farley JH, Ezpeleta NR, Davies CR, Clear NP, Grewe P, Murua H. 2021. A review of the fisheries, life history and stock structure of tropical tuna (Skipjack Katsuwonus Pelamis, Yellowfin Thunnus albacares and Bigeye Thunnus obesus) in the Indian Ocean. Adv Mar Biol 88: 39-89. DOI: 10.1016/bs.amb.2020.09.002.
Baharuddin NAI, Zainuddin M, Najamuddin. 2022. The impact of ENSO-IOD on Decapterus spp. in Pangkajene Kepulauan and Barru Waters, Makassar Strait, Indonesia. Biodiversitas 23 (11):5613-5622. DOI: 10.13057/biodiv/d231110.
Bahtiar A, Barata A, Novianto D. 2013. Distribution of the hook rate of tuna longline in the Indian Ocean. Jurnal Penelitian Perikanan Indonesia 19 (4): 195-202. [Indonesian]
Bakun A. 2006. Fronts and eddies as key structures in the habitat of marine fish larvae: Opportunity, adaptive response and competitive advantage. Sci Mar 70S2: 105-22. DOI: 10.3989/scimar.2006.70s2105.
Behera S, Brandt P, Reverdin G. 2013. The Tropical ocean circulation and dynamics. In: Siedler G, Griffies SM, Gould J, Church JA (eds). Ocean Circulation and Climate. Academic Press, Massachusetts. DOI: 10.1016/B978-0-12-391851-2.00015-5.
Belkin IM. 2021. Review remote sensing of ocean fronts in marine ecology and fisheries. Remote Sens 13 (5): 1-22. DOI: 10.3390/rs13050883.
Block BA, Stevens ED. 2001. Tuna Physiology, Ecology, and Evolution. Academic Press, California.
Brill RW, Bigelow KA, Musyl MK, Fritsches KA, Warrant EJ. 2005. Bigeye tuna ( Thunnus obesus ) behavior and physiology and their relevance to stock assessments and fishery biology. Coll Vol Sci Pap Int Comm Cons Atl Tunas 57 (2):142-61.
Cai LN, Xu LL, Tang DL, Shao WZ, Liu Y, Zuo JC, Ji QY. 2020. The effects of ocean temperature gradients on bigeye tuna (Thunnus obesus) distribution in the equatorial Eastern Pacific Ocean. Adv Space Res 65 (12): 2749-60. DOI: 10.1016/j.asr.2020.03.030.
Chapman CC, Lea MA, Meyer A, Sallée JB, Hindell M. 2020. Defining Southern Ocean fronts and their influence on biological and physical processes in a changing climate. Nat Clim Change 10 (3): 209-19. DOI: 10.1038/s41558-020-0705-4.
Fu D, DeBruyn P, Fiorellato F, Nelson L, Pierre L, FernandezDiaz C, Chassot E. 2023. Assessing the impact of growth on estimates of fishing mortality-An Illustration with Indian Ocean Bigeye Tuna. Reg Stud Mar Sci 62: 102981. DOI: 10.1016/j.rsma.2023.102981.
Gaertner D, Guéry L, Goñi N, Amande J, Alayon PP, N’Gom F, Pereira J, Addi E, Ailloud L, Beare D. 2022. Tag-shedding rates for tropical tuna species in the Atlantic Ocean Estimated from Double-Tagging Data. Fish Res 248: 106211. DOI: 10.1016/j.fishres.2021.106211.
Gaol JL, Leben RR, Vignudelli S, Mahapatra K, Okada Y, Nababan B, Ling MM, Amri K, Arhatin RE, Syahdan M. 2015. Variability of Satellite-derived sea surface height anomaly, and its relationship with bigeye tuna (Thunnus obesus) catch in the Eastern Indian Ocean. Eur J Remote Sens 48: 465-77. DOI: 10.5721/EuJRS20154826.
Gaol JL, Mahapatra K, Okada Y, Pasaribu BP, Manurung D, Nurjaya IW. 2002. Fish catch relative to environmental parameters observed from satellite during ENSO and dipole mode events 1997/98 in the South Java Sea. PORSEC BALI 407-13.
Gingele FX, Deckker PD, Girault A, Guichard F. 2002. History of the South Java current over the Past 80 Ka. Palaeogeogr Palaeoclimatol Palaeoecol 183 (3-4): 247-260. DOI: 10.1016/S0031-0182(01)00489-8.
Gordon AL. 2005. Oceanography of the Indonesian Seas and their throughflow. Oceanography (Wash.D.C.) 18 (4): 14-27. DOI: 10.5670/oceanog.2005.18.
Guisan A, Edwards Jr TC, Hastie T. 2002. Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecol Modell 157: 89-100. DOI: 10.1016/S0304-3800(02)00204-1.
Haghi VA, Zarkami R, Sadeghi R, Fazli H. 2016. Modeling Habitat Preferences of Caspian kutum, Rutilus frisii kutum (Kamensky, 1901) (Actinopterygii, Cypriniformes) in the Caspian Sea. Hydrobiologia 766 (1):103-19. DOI: 10.1007/s10750-015-2446-3.
Hapsari AT. 2006. Optimization of tuna Catching Business Production Post Fuel Price Increase at PT. Perikanan Samodra Besar, Benoa, Bali. [Thesis]. Institut Pertanian Bogor, Bogor. [Indonesian]
Hastie T, Tibshirani R. 1987. Generalized Additive Models: Some applications. J Am Stat Assoc 83: 371-386. DOI: 10.1080/01621459.1987.10478440.
Hidayat R, Zainuddin M, Safruddin S, Mallawa A, Farhum SA. 2019. Skipjack tuna (Katsuwonus pelamis) Catch in relation to the thermal and chlorophyll-a fronts during May - July in the Makassar Strait. IOP Conf Ser: Earth Environ Sci 253 (1). DOI: 10.1088/1755-1315/253/1/012045.
Hastie TJ, Tibshirani RJ. 1990. Generalized Additive Models. Chapman & Hall/CRC, New York/Boca Raton.
Holland KN, Sibert JR. 1994. Physiological thermoregulation in bigeye tuna, Thunnus obesus. Environ Biol Fish 40:319-327. DOI: 10.1007/BF00002520.
Jatmiko I, Setyadji B, Novianto D. 2014. Spatial and temporal distribution of bigeye tuna (Thunnus obesus) in the Eastern Indian Ocean. Jurnal Lit. Perikanan Indonesia 20 (3):137-42. [Indonesian]
Jayawiguna MH, Triyono, Wibowo S. 2019. Overview of Potential, Development, and Challenges in the Utilization of Marine and Fisheries Resources in FMA 573. In: Wibowo W, Jayawiguna MH, Triyono (eds). Potensi sumberdaya kelautan dan perikanan WPPNRI 573. AMAFRAD Press, Jakarta. [Indonesian]
Johnson JB, Omland KS. 2004. Model selection in ecology and evolution. Trends Ecol Evol 19 (2):101-108. DOI: 10.1016/j.tree.2003.10.013.
Kim J, Na H. 2022. Interannual variability of yellowfin tuna (Thunnus albacares) and bigeye tuna (Thunnus obesus) catches in the Southwestern Tropical Indian Ocean and its relationship to climate variability. Front Mar Sci 9. DOI: 10.3389/fmars.2022.857405.
Kumar PS, Pillai GN, Manjusha U. 2014. El Nino Southern Oscillation (ENSO) impact on tuna fisheries in Indian Ocean. Springer Plus 3 (1): 591. DOI: 10.1186/2193-1801-3-591.
Lan KW, Wu YL, Chen LC, Naimullah M, Lin TH. 2021. Effects of climate change in marine ecosystems based on the spatiotemporal age structure of top predators: A case study of bigeye tuna in the Pacific Ocean. Front Mar Sci 8. DOI:10.3389/fmars.2021.614594.
Lee D, Son SH, Kim W, Park JM, Joo H, Lee SH. 2018. Spatio-temporal variability of the habitat suitability index for chub mackerel (Scomber japonicus) in the East/Japan Sea and the South Sea of South Korea. Remote Sens 10 (6). DOI: 10.3390/rs10060938.
Lee MA, Weng JS, Lan KW, Vayghan AH, Wang YC, Chan JW. 2020. Empirical habitat suitability model for immature albacore tuna in the North Pacific Ocean obtained using multisatellite remote sensing data. Intl J Remote Sens 41 (15): 5819-37. DOI: 10.1080/01431161.2019.1666317.
Ministry of Marine Affairs and Fisheries (MMAF). 2022. Roadmap Preparation of Indonesia Ocean Accounts. Kementrian Kelautan Perikanan, Jakarta.
Meyers G. 1996. Variation of Indonesian throughflow and the El Niño-Southern Oscillation. J Geophys Res Oceans 101 (C5): 12255-12263. DOI: 10.1029/95JC03729.
Mugo R, Saitoh SI. 2020. Ensemble modelling of skipjack tuna (Katsuwonus pelamis) habitats in the western north pacific using satellite remotely sensed data; a comparative analysis using machine-learning models. Remote Sens 12 (16). DOI: 10.3390/SU12166419.
Nugraha B, Hufiadi. 2012. Tuna longline fisheries productivity in Benoa (Case Study: PT. Perikanan Nusantara). Mar Fisheries 3 (2):135-140. DOI: 10.29244/jmf.3.2.135-140.
Nugraha B, Triharyuni S. 2009. The influence of temperature and depth of tuna longline fishing hooks on tuna catch results in the Indian Ocean. Jurnal Penelitian.Perikanan Indonesia 15 (3):239-47. [Indonesian]
Nurani TW, Wahyuningrum PI, SH Wisudo, Gigentika S, Arhatin RE. 2018. Model designs of Indonesian tuna fishery management in the Indian Ocean (FMA 573) using soft system methodology approach. Egypt J Aquat Res 44 (2):139-44. DOI: 10.1016/j.ejar.2018.06.005.
Oliver MA, Webster R. 1990. Kriging: A method of interpolation for geographical information systems. Intl J Geogr Inf Syst 4 (3): 313-332. DOI: 10.1080/02693799008941549.
Pillai NG, Satheeshkumar P. 2012. Biology, fishery, conservation and management of Indian Ocean Tuna Fisheries. Ocean Sci J 47 (4): 411-433http://dx.doi.org/10.1007/s12601-012-0038-y.
Rochman F, Jatmiko I, Fahmi Z. 2018. Dynamics of the tuna longline industry at Benoa Port. Mar Fishery 9 (2):209-220. DOI: 10.29244/jmf.9.2.209-220. [Indonesian]
Safruddin, Hidayat R, Farhum SA, Zainuddin M. 2022. The Use of Statistical Models in identifying skipjack tuna habitat characteristics during the southeast monsoon in the Bone Gulf, Indonesia. Biodiversitas 23 (4): 2231-37. DOI: 10.13057/biodiv/d230459.
Sambah, AB, Izzah AN, Intyas CA, Widhiyanuriyawan D, Affandy DP, Wijaya A. 2023. Analysis of the Effect of ENSO and IOD on the productivity of yellowfin tuna (Thunnus albacares) in the South Indian Ocean, East Java, Indonesia. Biodiversitas 24 (5): 2689-2700. DOI: 10.13057/biodiv/d240522.
Scales KL, Miller PI, Embling CB, Ingram SN, Pirotta E, Votier SC. 2014. Mesoscale fronts as foraging habitats: composite front mapping reveals oceanographic drivers of habitat use for a pelagic seabird. J R Soc Interface 11 (100). DOI: 10.1098/rsif.2014.0679.
Schaefer KM, Fuller DW. 2022. Horizontal movements, utilization distributions, and mixing rates of yellowfin tuna (Thunnus albacares) tagged and released with archival tags in six discrete areas of the Eastern and Central Pacific Ocean. Fish Oceanogr 31 (1): 84-107. DOI: 10.1111/fog.12564.
Senina I, Lehodey P, Sibert J, Hampton J. 2019. Integrating tagging and fisheries data into a spatial population dynamics model to improve its predictive skills. Can J Fish Aquat Sci 77 (3): 576-593. DOI: 10.1139/cjfas-2018-0470.
Setiawati MD, Miura F. 2014. Sea surface temperature and sea surface chlorophyll in relation to bigeye tuna fishery in the southern waters off Java and Bali. The 12th Biennial Conference of Pan Ocean Remote Sensing Conference (PORSEC). Bali, 4-7 November 2014.
Setiawati MD, Sambah AB, Miura F, Tanaka T, As-Syakur AR. 2015. Characterization of bigeye tuna habitat in the Southern Waters off Java-Bali using remote sensing data. Adv Space Res 55 (2): 732-46. DOI: 10.1016/j.asr.2014.10.007.
Sudre F, Dewitte B, Mazoyer C, Garçon V, Sudre J, Penven P, Rossi V. 2023. Spatial and seasonal variability of horizontal temperature fronts in the mozambique channel for both epipelagic and mesopelagic realms. Front Mar Sci 9. DOI: 10.3389/fmars.2022.1045136.
Syah AF, Gaol JL, Zainuddin M, Apriliya NR, Berlianty D, Mahabror D. 2019. Habitat model development of bigeye tuna (Thunnus obesus) during Southeast Monsoon in the Eastern Indian Ocean Using Satellite Remotely Sensed Data. IOP Conf Ser: Earth Environ Sci 276: 012011. DOI: 10.1088/1755-1315/276/1/012011.
Syah AF, Saitoh SI, Alabia ID, Hirawake T. 2016. Predicting potential fishing zones for pacific saury (Cololabis saira) with Maximum Entropy Models and Remotely Sensed Data. Fish Bull 114 (3): 330-342. DOI: 10.7755/FB.114.3.6.
Syamsuddin ML, Saitoh SI, Hirawake T, Samsul B, Harto AB. 2013. Effects of El Niño-Southern Oscillation events on catches of bigeye tuna (Thunnus obesus) in the Eastern Indian Ocean off Java. Fish Bull 111 (2): 175-88. DOI: 10.7755/FB.111.2.5.
Vinogradova N, Lee T, Boutin J,Drushka K, Fournier S, Sabia R,Stammer D, Bayler E, Reul N,Gordon A, Melnichenko O, Li L,Hackert E, Martin M, Kolodziejczyk N,Hasson A, Brown S, Misra S andLindstrom E. 2019. Satellite Salinity Observing System: Recent Discoveries and the Way Forward. Front Mar Sci 6: 243. DOI: 10.3389/fmars.2019.00243.
Wang X, Wang C. 2014. Different impacts of various el niño events on the Indian Ocean Dipole. Climate Dynamics 42 (3):991-1005. DOI: 10.1007/s00382-013-1711-2.
Wood SN. 2017. Generalized Addtive Models: An Introduction with R Second Edition. CRC Press, United Kingdom.
Wright SR, Righton D, Naulaerts J, Schallert RJ, Bendall V, Griffiths C, Castleton M, Gutierrez DD, Madigan D, Beard A, Clingham E, Henry L, Laptikhovsky V, Beare B, Thomas W, Block BA, Collins MA. 2021. Fidelity of Yellowfin Tuna to Seamount and Island Foraging Grounds in the Central South Atlantic Ocean. Deep Sea Res Part I: Oceanogr Res Pap 172. DOI: 10.1016/j.dsr.2021.103513.
Zainuddin M, Farhum A, Safruddin S, Selamat MB, Sudirman S, Nurdin N, Syamsuddin M, Ridwan M, Saitoh SI. 2017. Detection of pelagic habitat hotspots for skipjack tuna in the Gulf of Bone-Flores Sea, Southwestern Coral Triangle Tuna, Indonesia. PLoS ONE 12 (10): 1-19. DOI: 10.1371/journal.pone.0185601.
Zainuddin M, Farhum SA, Safruddin S, Hidayat R, Putri ARS, Ridwan M. 2021. Dynamics of thermal fronts distribution in the Flores Sea, Indonesia: An implication for locating potential skipjack tuna fishing ground. IOP Conf Ser: Earth Environ Sci 763 (1): 012045. DOI: 10.1088/1755-1315/763/1/012045.
Zainuddin M, Safruddin S, Farhum A, Budimawan B, Hidayat R, Ihsan YN. 2023. Satellite-Based ocean color and thermal signatures defining habitat hotspots and the movement pattern for commercial skipjack tuna in Indonesia Fisheries Management Area 713, Western Tropical Pacific. Remote Sens 15 (5): 1268. DOI: 10.3390/rs15051268.
Zainuddin M, Saitoh K, Saitoh SI. 2008. Albacore (Thunnus alalunga) fishing ground in relation to oceanographic conditions in the Western North Pacific Ocean using Remotely Sensed Satellite Data. Fish Oceanogr 17 (2): 61-73. DOI: 10.1111/j.1365-2419.2008.00461.x.
Zhang T, Song L, Yuan H, Song B, Ngando NE. 2021. A comparative study on habitat models for adult bigeye tuna in the indian ocean based on gridded tuna longline fishery data. Fish Oceanogr 30 (5): 584-607. DOI: 10.1111/fog.12539.

Most read articles by the same author(s)