Review: The effect of climate change on the distribution pattern of small pelagic fish around the world

##plugins.themes.bootstrap3.article.main##

ALFIRA YUNIAR
MUKTI ZAINUDDIN
RACHMAT HIDAYAT
SITI KHADIJAH SRIOKTOVIANA
SAFRUDDIN
MUZZNEENA AHMAD MUSTAPHA
ST. AISJAH FARHUM

Abstract

Abstract. Yuniar A, Zainuddin M, Hidayat R, Srioktoviana SK, Safruddin, Mustapha MA, Farhum SA. 2024. Review: The effect of climate change on the distribution pattern of small pelagic fish around the world. Biodiversitas 25: 3325-3341. Small pelagic fish populations, which are critical to marine ecosystems and play a crucial part in food availability worldwide, are significantly impacted by climate change. Variations of small pelagic catch could be indicated by indices of climate variability such as AMO (Atlantic Multidecadal Oscillation), ENSO (El-Nino Southern Oscillation), IOD (Indian Ocean Dipole), and Monsoon. The purpose of this study was to provide important insight into the relationship of climate variability with the distribution of dominant species of small pelagic fish such as European sardines, mackerel, Decapterus sp., anchovy, and Sardinella sp. from 1974-2022. On average, the temperature optimum of small pelagic fish is generally 28.31±1.97°C, chlorophyll concentration of 0.68±0.37 mg.m-3, and salinity of 31.44±2.40 psu. In North Atlantic Waters, the dynamic migration and abundance of pelagic fish are influenced by the climate variability of AMO tharough the warm phase and cold phase. The impact of ENSO, IOD, and chlorophyll variability affect the distribution pattern and abundance of small pelagic species (mackerel, lemuru, anchovy, indian scad, and sardine) in tropical and subtropical waters. In the context of climate change impacts, the results show that small pelagic fish with a preference for warm temperatures tend to migrate to higher latitudes. Understanding the effect of climate change on the spatial and temporal dynamics of small pelagic fish could help improve the performance of future small pelagic fishing strategies and management around the world.

##plugins.themes.bootstrap3.article.details##

References
Aedo, G., Garcés, C., Niklitschek, E., Musleh, S., Cubillos, L.A., Quiñones, R.A., 2020. Spatial distribution of small pelagic fishes: Implications for fishing quota allocations. Mar. Policy 120. https://doi.org/10.1016/j.marpol.2020.104147
Ainsworth, C.H., Varkey, D.A., Pitcher, T.J., 2008. Ecosystem simulations supporting ecosystem-based fisheries management in the Coral Triangle, Indonesia. Ecol. Modell. 214, 361–374. https://doi.org/10.1016/j.ecolmodel.2008.02.039
Alaei, A., Yousef Paighambari, S., Salarpouri, A., 2021. Effect of climate change on small pelagic fishes using satellite images in Persian Gulf and Oman Sea.
Alheit, J., Licandro, P., Coombs, S., Garcia, A., Giráldez, A., Santamaría, M.T.G., Slotte, A., Tsikliras, A.C., 2014. Atlantic Multidecadal Oscillation (AMO) modulates dynamics of small pelagic fishes and ecosystem regime shifts in the eastern North and Central Atlantic. J. Mar. Syst. 131, 21–35. https://doi.org/10.1016/j.jmarsys.2013.11.002
Apriansyah, Atmadipoera, A.S., Nugroho, D., Jaya, I., Akhir, M.F., 2023. Simulated seasonal oceanographic changes and their implication for the small pelagic fisheries in the Java Sea, Indonesia. Mar. Environ. Res. 188. https://doi.org/10.1016/j.marenvres.2023.106012
Ar-ridhaty Akita, E., Gaol, J.L., Amri, K., 2023. Maximum entropy model for prediction of small pelagic fishing grounds in the Java Sea. J. Ilmu dan Teknol. Kelaut. Trop. 14, 449–461. https://doi.org/10.29244/jitkt.v14i3.45164
Asiedu, B., Okpei, P., Nunoo, F.K.E., Failler, P., 2021. A fishery in distress: An analysis of the small pelagic fishery of Ghana. Mar. Policy 129. https://doi.org/10.1016/j.marpol.2021.104500
B, A., A, B., F, F., JR, S., M, S., A, P., MH, I., K, H., 2017. Assessing the Impact of Temperature and Chlorophyll Variations on the Fluctuations of Sardine Abundance in Al-Hoceima (South Alboran Sea). J. Mar. Sci. Res. Dev. 07. https://doi.org/10.4172/2155-9910.1000239
Báez, J.C., Pennino, M.G., Albo-Puigserver, M., Coll, M., Giraldez, A., Bellido, J.M., 2022. Effects of environmental conditions and jellyfish blooms on small pelagic fish and fisheries from the Western Mediterranean Sea. Estuar. Coast. Shelf Sci. 264. https://doi.org/10.1016/j.ecss.2021.107699
Baharuddin, N.A.I., Zainuddin, M., Najamuddin, 2022. The impact of ENSO-IOD on Decapterus spp. in Pangkajene Kepulauan and Barru Waters, Makassar Strait, Indonesia. Biodiversitas 23, 5613–5622. https://doi.org/10.13057/biodiv/d231110
Bakun, A., Black, B.A., Bograd, S.J., García-Reyes, M., Miller, A.J., Rykaczewski, R.R., Sydeman, W.J., 2015. Anticipated Effects of Climate Change on Coastal Upwelling Ecosystems. Curr. Clim. Chang. Reports 1, 85–93. https://doi.org/10.1007/s40641-015-0008-4
Bappenas, 2018. RAN API Review?: Study of Scientific Basic of the Dangers of Climate Change [WWW Document]. Jakarta.
Barange, M., Coetzee, J., Takasuka, A., Hill, K., Gutierrez, M., Oozeki, Y., Lingen, C. van der, Agostini, V., 2009. Habitat expansion and contraction in anchovy and sardine populations. Prog. Oceanogr. 83, 251–260. https://doi.org/10.1016/j.pocean.2009.07.027
Ben Lamine, E., Schickele, A., Guidetti, P., Allemand, D., Hilmi, N., Raybaud, V., 2023. Redistribution of fisheries catch potential in Mediterranean and North European waters under climate change scenarios. Sci. Total Environ. 879. https://doi.org/10.1016/j.scitotenv.2023.163055
Binet, D., Gobert, B., Maloueki, L., 2001. El Niño-like warm events in the Eastern Atlantic ( 6 ° N , 20 ° S ) and fish availability from Congo to Angola ( 1964 – 1999 ) 14, 99–113.
Blenckner, T., Llope, M., Möllmann, C., Voss, R., Quaas, M.F., Casini, M., Lindegren, M., Folke, C., Stenseth, N.C., 2015. Climate and fishing steer ecosystem regeneration to uncertain economic futures. Proc. R. Soc. B Biol. Sci. 282. https://doi.org/10.1098/rspb.2014.2809
Boldt, J.L., Thompson, M., Rooper, C.N., Hay, D.E., Schweigert, J.F., Quinn, T.J., Cleary, J.S., Neville, C.M., 2019. Bottom-up and top-down control of small pelagic forage fish: Factors affecting age-0 herring in the Strait of Georgia, British Columbia. Mar. Ecol. Prog. Ser. 617–618, 53–66. https://doi.org/10.3354/meps12485
Bonanno, A., Giannoulaki, M., Barra, M., Basilone, G., Machias, A., Genovese, S., Goncharov, S., Popov, S., Rumolo, P., Bitetto, M. Di, Aronica, S., Patti, B., Fontana, I., Giacalone, G., Ferreri, R., Buscaino, G., Somarakis, S., Pyrounaki, M.M., Tsoukali, S., Mazzola, S., 2014. Habitat selection response of small pelagic fish in different environments. Two examples from the oligotrophic Mediterranean Sea. PLoS One 9. https://doi.org/10.1371/journal.pone.0101498
Brander, K., 2010. Impacts of climate change on fisheries. J. Mar. Syst. 79, 389–402. https://doi.org/10.1016/j.jmarsys.2008.12.015
Brochier, T., Auger, P., Pecquerie, L., Machu, E., Capet, X., Thiaw, M., Cheikh, B., Braham, C., Ettahiri, O., Charouki, N., Ndaw, O., Werner, F., Brehmer, P., 2018a. Progress in Oceanography Complex small pelagic fi sh population patterns arising from individual behavioral responses to their environment. Prog. Oceanogr. 164, 12–27. https://doi.org/10.1016/j.pocean.2018.03.011
Brochier, T., Auger, P.A., Pecquerie, L., Machu, E., Capet, X., Thiaw, M., Mbaye, B.C., Braham, C.B., Ettahiri, O., Charouki, N., Sène, O.N., Werner, F., Brehmer, P., 2018b. Complex small pelagic fish population patterns arising from individual behavioral responses to their environment. Prog. Oceanogr. 164, 12–27. https://doi.org/10.1016/j.pocean.2018.03.011
Brodeur, R.D., Auth, T.D., Phillips, A.J., 2019. Major shifts in pelagic micronekton and macrozooplankton community structure in an upwelling ecosystem related to an unprecedented marine heatwave. Front. Mar. Sci. 6, 1–15. https://doi.org/10.3389/fmars.2019.00212
Brosset, P., Fromentin, J.M., Van Beveren, E., Lloret, J., Marques, V., Basilone, G., Bonanno, A., Carpi, P., Donato, F., ?ikeš Ke?, V., De Felice, A., Ferreri, R., Gašparevi?, D., Giráldez, A., Gücü, A., Iglesias, M., Leonori, I., Palomera, I., Somarakis, S., Ti?ina, V., Torres, P., Ventero, A., Zorica, B., Ménard, F., Saraux, C., 2017. Spatio-temporal patterns and environmental controls of small pelagic fish body condition from contrasted Mediterranean areas. Prog. Oceanogr. 151, 149–162. https://doi.org/10.1016/j.pocean.2016.12.002
Cabral, H., 2023. Climate change impacts on the Nursery Function for Fish of Coastal Zones. Ref. Modul. Earth Syst. Environ. Sci.
Canales, C.M., Olea, G., Jurado, V., Espíondola, M., 2024. Management Strategies Evaluation (MSE) in a mixed and multi-specific fishery based on indicator species: An example of small pelagic fish in Ecuador. Mar. Policy 162, 106044. https://doi.org/10.1016/j.marpol.2024.106044
Checkley, D.M., Alheit, J., Oozeki, Y., Roy, C., 2009. Climate change and small pelagic fish, Climate Change and Small Pelagic Fish. Cambridge University Press. https://doi.org/10.1017/CBO9780511596681
Cheung, W.W.L., Brodeur, R.D., Okey, T.A., Pauly, D., 2015. Projecting future changes in distributions of pelagic fish species of Northeast Pacific shelf seas. Prog. Oceanogr. 130, 19–31. https://doi.org/10.1016/j.pocean.2014.09.003
Clarke, S.B., Nesbitt, W.A., Efitre, J., Masette, M., Chapman, L.J., 2022. Elemental composition of small pelagic fishes in three East African lakes: Implications for nutritional security. Fish. Res. 256, 106479. https://doi.org/10.1016/j.fishres.2022.106479
Couperus, B., Gastauer, S., Fässler, S.M.M., Tulp, I., van der Veer, H.W., Poos, J.J., 2016. Abundance and tidal behaviour of pelagic fish in the gateway to the Wadden Sea. J. Sea Res. 109, 42–51. https://doi.org/10.1016/j.seares.2016.01.007
Cubillos, L.A., Arcos, D.F., Bucarey, D.A., Canales, M.T., 2001. Seasonal growth of small pelagic fish off Talcahuano, Chile (37°S, 73°W): A consequence of their reproductive strategy to seasonal upwelling? Aquat. Living Resour. 14, 115–124. https://doi.org/10.1016/S0990-7440(01)01112-3
De Robertis, A., Levine, R., Williams, K., Wilson, C., 2023. Modifying a pelagic trawl to better retain small Arctic fishes. Deep. Res. Part II Top. Stud. Oceanogr. 207, 105225. https://doi.org/10.1016/j.dsr2.2022.105225
Dorantes-Gilardi, M., Rivas, D., 2019. Effects of the 2013–2016 Northeast Pacific warm anomaly on physical and biogeochemical variables off northwestern Baja California, derived from a numerical NPZD ocean model. Deep. Res. Part II Top. Stud. Oceanogr. 169–170, 104668. https://doi.org/10.1016/j.dsr2.2019.104668
Dvoretsky, V.G., Vodopianova, V. V., Bulavina, A.S., 2023. Effects of Climate Change on Chlorophyll a in the Barents Sea: A Long-Term Assessment. Biology (Basel). 12. https://doi.org/10.3390/biology12010119
Ebango Ngando, N., Song, L., Cui, H., Xu, S., 2020. Relationship Between the Spatiotemporal Distribution of Dominant Small Pelagic Fishes and Environmental Factors in Mauritanian Waters. J. Ocean Univ. China 19, 393–408. https://doi.org/10.1007/s11802-020-4120-2
Elvianti, N., Muhiddin, A.H., Zainuddin, M., 2022. On The Relationship Between Area of Upwelling and Potential Fishing Zone in Makassar Strait. J. Ilmu Kelaut. SPERMONDE 7, 29–33.
Espi?ndola, F., Yáñez, E., Barbieri, M., Silva, C., Nieto, K., 2001. Climate variability and pelagic fisheries in northern Chile. Prog. Oceanogr. 49, 581–596.
Evans, C., Thomson, P.G., Davidson, A.T., Bowie, A.R., van den Enden, R., Witte, H., Brussaard, C.P.D., 2011. Potential climate change impacts on microbial distribution and carbon cycling in the Australian Southern Ocean. Deep. Res. Part II Top. Stud. Oceanogr. 58, 2150–2161. https://doi.org/10.1016/j.dsr2.2011.05.019
Fernandes, J.A., Frölicher, T.L., Rutterford, L.A., Erauskin-Extramiana, M., Cheung, W.W.L., 2020. Changes of potential catches for North-East Atlantic small pelagic fisheries under climate change scenarios. Reg. Environ. Chang. 20. https://doi.org/10.1007/s10113-020-01698-3
Feuilloley, G., Fromentin, J.M., Stemmann, L., Demarcq, H., Estournel, C., Saraux, C., 2020. Concomitant changes in the environment and small pelagic fish community of the Gulf of Lions. Prog. Oceanogr. 186. https://doi.org/10.1016/j.pocean.2020.102375
Fidelman, P., Evans, L., Fabinyi, M., Foale, S., Cinner, J., Rosen, F., 2012. Governing large-scale marine commons: Contextual challenges in the Coral Triangle. Mar. Policy 36, 42–53. https://doi.org/10.1016/j.marpol.2011.03.007
Fuentes, E.N., Zuloaga, R., Almarza, O., Mendez, K., Valdés, J.A., Molina, A., Pulgar, J., 2017. Upwelling-derived oceanographic conditions impact growth performance and growth-related gene expression in intertidal fish. Comp. Biochem. Physiol. Part - B Biochem. Mol. Biol. 214, 12–18. https://doi.org/10.1016/j.cbpb.2017.09.001
Galligan, B.P., McClanahan, T.R., 2024. Nutrition contributions of coral reef fisheries not enhanced by capture of small fish. Ocean Coast. Manag. 249, 107011. https://doi.org/10.1016/j.ocecoaman.2023.107011
Garcia-Soto, C., Vazquez-Cuervo, J., Clemente-Colón, P., Hernandez, F., 2012. Satellite oceanography and climate change. Deep. Res. Part II Top. Stud. Oceanogr. 77–80, 1–9. https://doi.org/10.1016/j.dsr2.2012.07.004
Gerasmio, Agmata, A., Santos, M., 2015. Genetic Diversity, population genetic structure and demographic history of Auxis thazard (Perciformes), Selar crumenophthalmus (Perciformes), and Sardinella lemuru (Clupeiformes) in Sulu-Celebes Sea inferred by mitochondrial DNA sequences. . Fish. Res. 162, 64–74.
Guerra, T.P., Santos, J.M.F.F. dos, Pennino, M.G., Lopes, P.F.M., 2021. Damage or benefit? How future scenarios of climate change may affect the distribution of small pelagic fishes in the coastal seas of the Americas. Fish. Res. 234. https://doi.org/10.1016/j.fishres.2020.105815
Gunarso, W., 1985. Fish Behavior; Its Relationship to fishing tools, methods and tactics. Bogor Agricultural Institute, Bogor.
Haditiar, Y., Putri, M.R., Ismail, N., Muchlisin, Z.A., Rizal, S., 2019. Numerical simulation of currents and volume transport in the Malacca Strait and part of South China Sea. Eng. J. 23, 129–143. https://doi.org/10.4186/ej.2019.23.6.129
Halpern, B.S., Frazier, M., Potapenko, J., Casey, K.S., Koenig, K., Longo, C., Lowndes, J.S., Rockwood, R.C., Selig, E.R., Selkoe, K.A., Walbridge, S., 2015. Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nat. Commun. 6. https://doi.org/10.1038/ncomms8615
Han, H., Yang, C., Jiang, B., Shang, C., Sun, Y., Zhao, X., Xiang, D., Zhang, H., Shi, Y., 2023. Construction of chub mackerel (Scomber japonicus) fishing ground prediction model in the northwestern Pacific Ocean based on deep learning and marine environmental variables. Mar. Pollut. Bull. 193. https://doi.org/10.1016/j.marpolbul.2023.115158
Harlyan, L.I., Rahma, F.M., Kusuma, D.W., Sambah, A.B., Matsuishi, T.F., S, P., 2022. Spasial Diversity of Small Pelagic Fish Species Caught in Bali Strait and Adjacent Indonesian Waters. Fish. Enviroment 46.
Haugen, B.I., Cramer, L.A., Waldbusser, G.G., Conway, F.D.L., 2021. Resilience and adaptive capacity of Oregon’s fishing community: Cumulative impacts of climate change and the graying of the fleet. Mar. Policy 126. https://doi.org/10.1016/j.marpol.2021.104424
Henson, S.A., Beaulieu, C., Ilyina, T., John, J.G., Long, M., Séférian, R., Tjiputra, J., Sarmiento, J.L., 2017. Rapid emergence of climate change in environmental drivers of marine ecosystems. Nat. Commun. 8. https://doi.org/10.1038/ncomms14682
Hidayat, R., Zainuddin, M., Safruddin, Wiyono, E.S., 2022. Identification of potential areas for upwelling based on characteristics of eddies event in the Bone gulf. IOP Conf. Ser. Earth Environ. Sci. 1119. https://doi.org/10.1088/1755-1315/1119/1/012083
Hollowed, A.B., Barbeaux, S.J., Cokelet, E.D., Farley, E., Kotwicki, S., Ressler, P.H., Spital, C., Wilson, C.D., 2012. Effects of climate variations on pelagic ocean habitats and their role in structuring forage fish distributions in the Bering Sea. Deep. Res. Part II Top. Stud. Oceanogr. 65–70, 230–250. https://doi.org/10.1016/j.dsr2.2012.02.008
Hong, X., Zhang, K., Li, J., Xu, Y., Sun, M., Jiang, J., Xu, S., Cai, Y., Qiu, Y., Chen, Z., 2023. Impacts of climate events on life history parameters of major commercial fishes in the Beibu Gulf, South China Sea in the last 15 years. Front. Mar. Sci. 10. https://doi.org/10.3389/fmars.2023.1234772
Huang, M., Ding, L., Wang, J., Ding, C., Tao, J., 2021. The impacts of climate change on fish growth: A summary of conducted studies and current knowledge. Ecol. Indic. 121, 106976. https://doi.org/10.1016/j.ecolind.2020.106976
IPCC, 2021. Climate Change 2021?: The Physical Science Basis Contribution pf Working Group 1 to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [WWW Document]. Cambridge Univ. Press.
Jiménez-Quiroz, M. del C., Cervantes-Duarte, R., Funes-Rodríguez, R., Barón-Campis, S.A., García-Romero, F. de J., Hernández-Trujillo, S., Hernández-Becerril, D.U., González-Armas, R., Martell-Dubois, R., Cerdeira-Estrada, S., Fernández-Méndez, J.I., González-Ania, L. V., Vásquez-Ortiz, M., Barrón-Barraza, F.J., 2019. Impact of “The Blob” and “El Niño” in the SW Baja California Peninsula: Plankton and environmental variability of Bahia Magdalena. Front. Mar. Sci. 6. https://doi.org/10.3389/fmars.2019.00025
Jurado-Ruzafa, A., González-Lorenzo, G., Jiménez, S., Sotillo, B., Acosta, C., Santamaría, M.T.G., 2019. Seasonal evolution of small pelagic fish landings index in relation to oceanographic variables in the Canary Islands (Spain). Deep. Res. Part II Top. Stud. Oceanogr. 159, 84–91. https://doi.org/10.1016/j.dsr2.2018.07.002
Kawasan, P., Rastrelliger, P.P., Satelit, M., Jauh, P., Teknik, D., Suhartono Nurdin, G.), Mustapha, A., Lihan, T., Mazlan, &, Ghaffar, A., 2015. Determination of Potential Fishing Grounds of Rastrelliger kanagurta Using Satellite Remote Sensing and GIS Technique, Sains Malaysiana.
Kripa, V., Mohamed, K.S., Koya, K.P.S., Jeyabaskaran, R., Prema, D., Padua, S., Kuriakose, S., Anilkumar, P.S., Nair, P.G., Ambrose, T. V., Dhanya, A.M., Abhilash, K.S., Bose, J., Divya, N.D., Shara, A.S., Vishnu, P.G., 2018. Overfishing and climate drives changes in biology and recruitment of the Indian oil sardine Sardinella longiceps in southeastern Arabian Sea. Front. Mar. Sci. 5, 1–20. https://doi.org/10.3389/fmars.2018.00443
Kurniawati, F., Sanjoto, T.B., Geografi, J.J., 2015. Geo Image (Spatial-Ecological-Regional) Info Artikel, Geo Image.
Kyewalyanga, M.S., 2022. Seasonality in Phytoplankton Species Composition and their Influence on Small Pelagic Fish along the Western Pemba Channel. Tanzania J. Sci. 48, 268–282. https://doi.org/10.4314/tjs.v48i2.4
Lakhnigue, A., Tandstad, M., Fuller, J., Sambe, B., Caramelo, A.M., 2019. More than fifteen years of collaboration on the assessment of small pelagic fish off Northwest Africa: Lessons learned and future perspectives. Deep. Res. Part II Top. Stud. Oceanogr. 159, 92–102. https://doi.org/10.1016/j.dsr2.2018.12.004
Lehodey, P., Alheit, J., Barange, M., Baumgartner, T., Beaugrand, G., Drinkwater, K., Fromentin, J.-M., Hare, S.R., Ottersen, G., Perry, R.I., Roy, C., Van Der Lingen, C.D., Werner, F., 2005. Climate variability, fish and fisheries.
Lentini, C.A.D., Podestá, G.G., Campos, E.J.D., Olson, D.B., 2001. Sea surface temperature anomalies on the western south atlantic from 1982 to 1994. Cont. Shelf Res. 21, 89–112. https://doi.org/10.1016/S0278-4343(00)00077-7
Li, M., Xu, Y., Sun, M., Li, J., Zhou, X., Chen, Z., Zhang, K., 2023. Impacts of Strong ENSO Events on Fish Communities in an Overexploited Ecosystem in the South China Sea. Biology (Basel). 12, 1–19. https://doi.org/10.3390/biology12070946
Lima, A.R.A., Baltazar-Soares, M., Garrido, S., Riveiro, I., Carrera, P., Piecho-Santos, A.M., Peck, M.A., Silva, G., 2022. Forecasting shifts in habitat suitability across the distribution range of a temperate small pelagic fish under different scenarios of climate change. Sci. Total Environ. 804. https://doi.org/10.1016/j.scitotenv.2021.150167
Lincoln, S., Chowdhury, P., Posen, P.E., Robin, R.S., Ramachandran, P., Ajith, N., Harrod, O., Hoehn, D., Harrod, R., Townhill, B.L., 2023. Interaction of climate change and marine pollution in Southern India: Implications for coastal zone management practices and policies. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2023.166061
Liu, S., Liu, Y., Alabia, I.D., Tian, Y., Ye, Z., Yu, H., Li, J., Cheng, J., 2020. Impact of Climate Change on Wintering Ground of Japanese Anchovy (Engraulis japonicus) Using Marine Geospatial Statistics. Front. Mar. Sci. 7, 1–15. https://doi.org/10.3389/fmars.2020.00604
Lloret-Lloret, E., Albo-Puigserver, M., Giménez, J., Navarro, J., Pennino, M.G., Steenbeek, J., Bellido, J.M., Coll, M., 2022. Small pelagic fish fitness relates to local environmental conditions and trophic variables. Prog. Oceanogr. 202, 37–49. https://doi.org/10.1016/j.pocean.2022.102745
Lopes, C., Ambrosino, A.C., Figueiredo, C., Caetano, M., Santos, M.M., Garrido, S., Raimundo, J., 2023. Microplastic distribution in different tissues of small pelagic fish of the Northeast Atlantic Ocean. Sci. Total Environ. 901. https://doi.org/10.1016/j.scitotenv.2023.166050
Lu, W., Oey, L.Y., Liao, E., Zhuang, W., Yan, X.H., Jiang, Y., 2018. Physical modulation to the biological productivity in the summer Vietnam upwelling system. Ocean Sci. 14, 1303–1320. https://doi.org/10.5194/os-14-1303-2018
Lumban-Gaol, J., Siswanto, E., Mahapatra, K., Natih, N.M.N., Nurjaya, I.W., Hartanto, M.T., Maulana, E., Adrianto, L., Rachman, H.A., Osawa, T., Rahman, B.M.K., Permana, A., 2021. Impact of the strong downwelling (Upwelling) on small pelagic fish production during the 2016 (2019) negative (positive) indian ocean dipole events in the eastern indian ocean off java. Climate 9, 1–11. https://doi.org/10.3390/cli9020029
Ma’, A., Priatna, A., Amri, K., Nurdin, D.E., 2019. Hubungan...di Wilayah Pengelolaan Perikanan Negara Republik Indonesia (WPP NRI) 712 Laut Jawa (Ma’Mun, A., et al) INDONESIA (WPP NRI) 712 LAUT JAWA THE RELATIONSHIP BETWEEN OF OCEANOGRAPHIC CONDITIONS AND SPATIAL DISTRIBUTION PELAGIC FISH IN THE FISHERIES.
Ma, S., Cheng, J., Li, J., Liu, Y., Wan, R., Tian, Y., 2019. Interannual to decadal variability in the catches of small pelagic fishes from China Seas and its responses to climatic regime shifts. Deep. Res. Part II Top. Stud. Oceanogr. 159, 112–129. https://doi.org/10.1016/j.dsr2.2018.10.005
Magliozzi, C., Palma, M., Druon, J.N., Palialexis, A., Abigail, M.G., Ioanna, V., Rafael, G.Q., Elena, G., Birgit, H., Laura, B., Felipe, A.L., 2023. Status of pelagic habitats within the EU-Marine Strategy Framework Directive: Proposals for improving consistency and representativeness of the assessment. Mar. Policy 148. https://doi.org/10.1016/j.marpol.2022.105467
Manik, R., Handoco, E., 2021. Variations in temperature and chlorophyll are related to the dynamics of catching mackerel and tuna in the waters of the Malacca Strait.
Maynou, F., Sabatés, A., Salat, J., 2014. Clues from the recent past to assess recruitment of Mediterranean small pelagic fishes under sea warming scenarios. Clim. Change 126, 175–188. https://doi.org/10.1007/s10584-014-1194-0
Menéndez Delgado, E.R., Castillo Ruperti, R.J., Zambrano Yépez, C.A., Cedeño Marcillo, G.M., 2023. Environmental aspects and management preferences: A case study of small pelagic fisheries in the Crucita parish of the Portoviejo canton. Heliyon 9, 1–12. https://doi.org/10.1016/j.heliyon.2023.e17858
Merino, G., Barange, M., Mullon, C., 2010. Climate variability and change scenarios for a marine commodity: Modelling small pelagic fish, fisheries and fishmeal in a globalized market. J. Mar. Syst. 81, 196–205. https://doi.org/10.1016/j.jmarsys.2009.12.010
Mohan, J.A., Sutton, T.T., Cook, A.B., Boswell, K.M., David Wells, R.J., 2017. Influence of oceanographic conditions on abundance and distribution of post-larval and juvenile carangid fishes in the northern Gulf of Mexico. Fish. Oceanogr. 26, 526–541. https://doi.org/10.1111/fog.12214
Montero-Serra, I., Edwards, M., Genner, M.J., 2015. Warming shelf seas drive the subtropicalization of European pelagic fish communities. Glob. Chang. Biol. 21, 144–153. https://doi.org/10.1111/gcb.12747
Montes, I., Schneider, W., Colas, F., Blanke, B., Echevin, V., 2011. Subsurface connections in the eastern tropical Pacific during la Nia 1999-2001 and El Nio 2002-2003. J. Geophys. Res. Ocean. https://doi.org/10.1029/2011JC007624
Mukherjee, S., Pal, J., Manna, S., Saha, A., Das, D., 2023. El-Niño Southern Oscillation and its effects, in: Visualization Techniques for Climate Change with Machine Learning and Artificial Intelligence. Elsevier, pp. 207–228. https://doi.org/10.1016/b978-0-323-99714-0.00013-3
Nababan, B., Rosyadi, N., Manurung, D., Natih, N.M., Hakim, R., 2016. The Seasonal Variability of Sea Surface Temperature and Chlorophyll-a Concentration in the South of Makassar Strait. Procedia Environ. Sci. 33, 583–599. https://doi.org/10.1016/j.proenv.2016.03.112
Nair, P.G., Joseph, S., Pillai, N., Abdulla, M.H.A., 2023. Is there a significant long-term shift in phytoplankton in small pelagic fish diets along India’s southwest coast? Oceanologia 65, 297–309. https://doi.org/10.1016/j.oceano.2022.07.001
Neokye, E.O., Dossou, S., Iniga, M., Alabi-Doku, B.N., 2021. The role of oceanic environmental conditions on catch of Sardinella spp. in Ghana. Reg. Stud. Mar. Sci. 44, 101768. https://doi.org/10.1016/j.rsma.2021.101768
Ngurah, G., Yogiswara, A., Sutrisna, I.K., n.d. Pengaruh Perubahan Iklim terhadap hasil produksi ikan di Kabupaten Badung. E-Jurnal EP Unud 3613–3643.
Nontji, A., Supangat, I., 2018. Pelagic Enviroment in the Western part of Jakarta Bay. Mar. Res. Indones. 20, 69–85. https://doi.org/10.14203/mri.v20i0.383
Nos, D., Navarro, J., Solé, M., 2023. The influence of ecological factors in the modulation of pollution biomarkers of two small pelagic marine fish. Mar. Pollut. Bull. 188. https://doi.org/10.1016/j.marpolbul.2023.114717
Nurdin, S., Mustapha, M.A., Lihan, T., Zainuddin, M., 2017. Applicability of remote sensing oceanographic data in the detection of potential fishing grounds of Rastrelliger kanagurta in the archipelagic waters of Spermonde, Indonesia. Fish. Res. 196, 1–12. https://doi.org/10.1016/j.fishres.2017.07.029
Oozeki, Y., Ñiquen Carranza, M., Takasuka, A., Ayón Dejo, P., Kuroda, H., Tam Malagas, J., Okunishi, T., Vásquez Espinoza, L., Gutiérrez Aguilar, D., Okamura, H., Guevara Carrasco, R., 2019. Synchronous multi-species alternations between the northern Humboldt and Kuroshio Current systems. Deep. Res. Part II Top. Stud. Oceanogr. 159, 11–21. https://doi.org/10.1016/j.dsr2.2018.11.018
Palomera, I., Olivar, M.P., Salat, J., Sabatés, A., Coll, M., García, A., Morales-Nin, B., 2007. Small pelagic fish in the NW Mediterranean Sea: An ecological review. Prog. Oceanogr. 74, 377–396. https://doi.org/10.1016/j.pocean.2007.04.012
Pandey, R.S., Liou, Y.A., 2022. Sea surface temperature (SST) and SST anomaly (SSTA) datasets over the last four decades (1977–2016) during typhoon season (May to November) in the entire Global Ocean, North Pacific Ocean, Philippine Sea, South China sea, and Eastern China Sea. Data Br. 45, 108646. https://doi.org/10.1016/j.dib.2022.108646
Panggabean, D., Noviyanti, D.R., 2022. Distribution of Small Pelagic Fish in JMF Triangle Water: Relationship with SST and Chlorophyll-a.
Paramo, J., Quiñones, R.A., Ramirez, A., Wiff, R., 2003. Relationship between abundance of small pelagic fishes and environmental factors in the Colombian Caribbean Sea: An analysis based on hydroacoustic information. Aquat. Living Resour. 16, 239–245. https://doi.org/10.1016/S0990-7440(03)00043-3
Pati, S., 1982. The Influence of Temperature and Salinity on the Pelagic Fishery in the Northern Part of the Bay of Bengal. ICES J. Mar. Sci. 40, 220–225. https://doi.org/10.1093/icesjms/40.3.220
Patterson, K., 1992. Fisheries for small pelagic species: an empirical approach to management targets. Rev. Fish Biol. Fish. 2, 321–338. https://doi.org/10.1007/BF00043521
Peck, M.A., Reglero, P., Takahashi, M., Catalán, I.A., 2013. Life cycle ecophysiology of small pelagic fish and climate-driven changes in populations. Prog. Oceanogr. https://doi.org/10.1016/j.pocean.2013.05.012
Pennino, M.G., Coll, M., Albo-Puigserver, M., Fernández-Corredor, E., Steenbeek, J., Giráldez, A., González, M., Esteban, A., Bellido, J.M., 2020. Current and Future Influence of Environmental Factors on Small Pelagic Fish Distributions in the Northwestern Mediterranean Sea. Front. Mar. Sci. 7. https://doi.org/10.3389/fmars.2020.00622
Perry, A.L., Low, P.J., Ellis, J.R., Reynolds, J.D., 2005. Ecology: Climate change and distribution shifts in marine fishes. Science (80-. ). 308, 1912–1915. https://doi.org/10.1126/science.1111322
Pincinato, R.B.M., Asche, F., Oglend, A., 2020. Climate change and small pelagic fish price volatility. Clim. Change 161, 591–599. https://doi.org/10.1007/s10584-020-02755-w
Poloczanska, E.S., Burrows, M.T., Brown, C.J., Molinos, J.G., Halpern, B.S., Hoegh-Guldberg, O., Kappel, C. V., Moore, P.J., Richardson, A.J., Schoeman, D.S., Sydeman, W.J., 2016. Responses of marine organisms to climate change across oceans. Front. Mar. Sci. 3, 1–21. https://doi.org/10.3389/fmars.2016.00062
Purwanto, A.D., Wisha, U.J., Suhadha, A.G., Permatasari, D., Rahmawati, E., 2023. Seasonal potential fishing zone model in the regional fisheries management of Indonesia (WPP-RI) 716 based on remote sensing satellite data. Kuwait J. Sci. https://doi.org/10.1016/j.kjs.2023.10.002
Puspasari, R., Rachmawati, P.F., Wijopriono, W., 2016. Vulnerability analisys of small pelagic fishes in Bali Strait and Makassar strait to the dynamic of sea surface temperature. J. Penelit. Perikan. Indones. 22, 33. https://doi.org/10.15578/jppi.22.1.2016.33-42
Putri, R.S., Hasrianti, H., Damis, D., Bibin, M., Putri, A.R.S., Kasim, M., Nurdin, S., 2022. The relationship between small pelagic fish catches with sea surface temperature and chlorophyll in Makassar Strait waters. J. Iktiologi Indones. 22, 65–76. https://doi.org/10.32491/jii.v22i1.582
Raj, D., 1979. Central Marine Fisheries Research Institute, Cochin - 682 018. Fish. Res. 21, 111–118.
Ramírez, F., Shannon, L.J., van der Lingen, C.D., Julià, L., Steenbeek, J., Coll, M., 2022. Climate and fishing simultaneously impact small pelagic fish in the oceans around the southernmost tip of Africa. Front. Mar. Sci. 9, 1–11. https://doi.org/10.3389/fmars.2022.1031784
Retnoningtyas, H., Agustina, S., Natsir, M., Ningtias, P., Hakim, A., Dhani, A.K., Hartati, I.D., Pingkan, J., Simanjuntak, C.P.H., Wiryawan, B., Taurusman, A.A., Purbayanto, A., Palm, H.W., Prasetia, R., Yulianto, I., 2024. Reproductive biology of the mackerel scad, Decapterus macarellus (Cuvier, 1833), in the Sulawesi Sea, Indonesia. Reg. Stud. Mar. Sci. 69, 103300. https://doi.org/10.1016/j.rsma.2023.103300
Robinson, C.J., 2016. Evolution of the 2014–2015 sea surface temperature warming in the central west coast of Baja California, Mexico, recorded by remote sensing. Geophys. Res. Lett. 43, 7066–7071. https://doi.org/10.1002/2016GL069356
Safruddin, Gaffar karmila, Zainuddin mukti, M. achmar, 2016. safrudidsn.pdf 383–391.
Safruddin, 2022. Karakteristik Daerah Penangkapan Ikan dengan Menggunakan Purse Seine di Selat Makassar dan Laut Flores The Characteristics of Fishing Ground Using Purse Seine in Makassar Strait and Flores Sea Safruddin 1?. Torani J. 5, 68–76.
Safruddin, Aswar, B., Rijal Ashar, M., Hidayat, R., Dewi, Y.K., Umar, M.T., Farhum, S.A., Mallawa, A., Zainuddin, M., 2019. The Fishing Ground of Large Pelagic Fish during the Southeast Monsoon in Indonesian Fisheries Management Area-713, in: IOP Conference Series: Earth and Environmental Science. Institute of Physics Publishing. https://doi.org/10.1088/1755-1315/370/1/012045
Safruddin, Zainuddin, M., Tresnanti, J., 2014. Dinamika Perubahan Suhu dan Klorofil-a TerhadapDistribusi Ikan Teri (Stelophorus spp) di Perairan PantaiSpermonde, Pangkep. J. IPTEKS PSP 1, 11–19.
Salvatteci, R., Gutierrez, D., Field, D., Sifeddine, A., Ortlieb, L., Caquineau, S., Baumgartner, T., Ferreira, V., Bertrand, A., 2019. Fish debris in sediments from the last 25 kyr in the Humboldt Current reveal the role of productivity and oxygen on small pelagic fishes. Prog. Oceanogr. 176. https://doi.org/10.1016/j.pocean.2019.05.006
Sambah, A.B., Miura, F., Kadarisman, H.P., Sartimbul, A., 2012. Remote sensing application for Sardinella lemuru assessment: a case study of the south waters of Malang Regency, East Java, Indonesia, in: Remote Sensing of the Marine Environment II. SPIE, p. 85250M. https://doi.org/10.1117/12.976284
Saraux, C., Van Beveren, E., Brosset, P., Queiros, Q., Bourdeix, J.H., Dutto, G., Gasset, E., Jac, C., Bonhommeau, S., Fromentin, J.M., 2019. Small pelagic fish dynamics: A review of mechanisms in the Gulf of Lions. Deep. Res. Part II Top. Stud. Oceanogr. 159, 52–61. https://doi.org/10.1016/j.dsr2.2018.02.010
Sari, M., Sri Wiyono, E., 2021. Impact of weather on fishing season of small pelagic fish in Lampung Bay Water. Albacore J.
Sartimbul, A., 2017. Management of Pelagic Fisheries Resources in Indonesia. Briwijaya University, Bandung.
Sartimbul, A., Nakata, H., Rohadi, E., Yusuf, B., Kadarisman, H.P., 2010. Variations in chlorophyll-a concentration and the impact on Sardinella lemuru catches in Bali Strait, Indonesia. Prog. Oceanogr. 87, 168–174. https://doi.org/10.1016/j.pocean.2010.09.002
Schickele, A., Leroy, B., Beaugrand, G., Goberville, E., Hattab, T., Francour, P., Raybaud, V., 2020. Modelling European small pelagic fish distribution: Methodological insights. Ecol. Modell. 416. https://doi.org/10.1016/j.ecolmodel.2019.108902
Sekadende, B., Scott, L., Anderson, J., Aswani, S., Francis, J., Jacobs, Z., Jebri, F., Jiddawi, N., Kamukuru, A.T., Kelly, S., Kizenga, H., Kuguru, B., Kyewalyanga, M., Noyon, M., Nyandwi, N., Painter, S.C., Palmer, M., Raitsos, D.E., Roberts, M., Sailley, S.F., Samoilys, M., Sauer, W.H.H., Shayo, S., Shaghude, Y., Taylor, S.F.W., Wihsgott, J., Popova, E., 2020. The small pelagic fishery of the Pemba Channel, Tanzania: What we know and what we need to know for management under climate change. Ocean Coast. Manag. 197. https://doi.org/10.1016/j.ocecoaman.2020.105322
Shannon, L., Coll, M., Neira, S., Cury, P., Roux, J.-P., n.d. Exploring the ecological role of small pelagic fish using trophic models: what can be learnt from fishing impacts about the possible impacts of climate change?
Simon I, P., Rikardo, H., Ferdimon, K., 2020. Variasi Musiman Suhu, Salinitas dan Kekeruhan Air Laut di Perairan Selat Lembeh, Sulawesi Utara. J. Ilm. PLATAX 8, 110–117.
Smith, J.A., Pozo Buil, M., Muhling, B., Tommasi, D., Brodie, S., Frawley, T.H., Fiechter, J., Koenigstein, S., Himes-Cornell, A., Alexander, M.A., Bograd, S.J., Cordero Quirós, N., Crowder, L.B., Curchitser, E., Green, S.J., Hardy, N.A., Haynie, A.C., Hazen, E.L., Holsman, K., Le Fol, G., Lezama-Ochoa, N., Rykaczewski, R.R., Stock, C.A., Stohs, S., Sweeney, J., Welch, H., Jacox, M.G., 2023. Projecting climate change impacts from physics to fisheries: A view from three California Current fisheries. Prog. Oceanogr. 211. https://doi.org/10.1016/j.pocean.2023.102973
Sprintall, J., Gordon, A.L., Wijffels, S.E., Feng, M., Hu, S., Koch-Larrouy, A., Phillips, H., Nugroho, D., Napitu, A., Pujiana, K., Susanto, R.D., Sloyan, B., Peña-Molino, B., Yuan, D., Riama, N.F., Siswanto, S., Kuswardani, A., Arifin, Z., Wahyudi, A.J., Zhou, H., Nagai, T., Ansong, J.K., Bourdalle-Badié, R., Chanut, J., Lyard, F., Arbic, B.K., Ramdhani, A., Setiawan, A., 2019. Erratum to: Detecting Change in the Indonesian Seas (Frontiers in Marine Science, (2019), 6, 10.3389/fmars.2019.00257). Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00549
Stern, N., Douek, J., Goren, M., Rinkevich, B., 2018. With no gap to mind: a shallow genealogy within the world’s most widespread small pelagic fish. Ecography (Cop.). 41, 491–504. https://doi.org/10.1111/ecog.02755
Suca, J.J., Pringle, J.W., Knorek, Z.R., Hamilton, S.L., Richardson, D.E., Llopiz, J.K., 2018. Feeding dynamics of Northwest Atlantic small pelagic fishes. Prog. Oceanogr. 165, 52–62. https://doi.org/10.1016/j.pocean.2018.04.014
Takasuka, A., 2018. Biological Mechanisms Underlying Climate Impacts on Population Dynamics of Small Pelagic Fish. https://doi.org/10.1007/978-4-431-56621-2_3
Tanner, S.E., Vieira, A.R., Vasconcelos, R.P., Dores, S., Azevedo, M., Cabral, H.N., Morrongiello, J.R., 2019. Regional climate, primary productivity and fish biomass drive growth variation and population resilience in a small pelagic fish. Ecol. Indic. 103, 530–541. https://doi.org/10.1016/j.ecolind.2019.04.056
Teixeira, C.M., Gamito, R., Leitão, F., Murta, A.G., Cabral, H.N., Erzini, K., Costa, M.J., 2016. Environmental influence on commercial fishery landings of small pelagic fish in Portugal. Reg. Environ. Chang. 16, 709–716. https://doi.org/10.1007/s10113-015-0786-1
Tiedemann, M., Ndour, I., Sow, F.N., Bagøien, E., Krakstad, J.O., Ostrowski, M., Stenevik, E.K., Ensrud, T., Isari, S., 2022. Asynchronized spawning responses of small pelagic fishes to a short-term environmental change. Mar. Ecol. Prog. Ser. 696, 85–102. https://doi.org/10.3354/meps14122
Tommasi, D., Stock, C.A., Pegion, K., Vecchi, G.A., Methot, R.D., Alexander, M.A., Checkley, D.M., 2017. Improved management of small pelagic fisheries through seasonal climate prediction: Ecol. Appl. 27, 378–388. https://doi.org/10.1002/eap.1458
Torri, M., Corrado, R., Falcini, F., Cuttitta, A., Palatella, L., Lacorata, G., Patti, B., Arculeo, M., Mifsud, R., Mazzola, S., Santoleri, R., 2018. Planktonic stages of small pelagic fishes (Sardinella aurita and Engraulis encrasicolus) in the central Mediterranean Sea: The key role of physical forcings and implications for fisheries management. Prog. Oceanogr. 162, 25–39. https://doi.org/10.1016/j.pocean.2018.02.009
Trenkel, V.M., Huse, G., MacKenzie, B.R., Alvarez, P., Arrizabalaga, H., Castonguay, M., Goñi, N., Grégoire, F., Hátún, H., Jansen, T., Jacobsen, J.A., Lehodey, P., Lutcavage, M., Mariani, P., Melvin, G.D., Neilson, J.D., Nøttestad, L., Óskarsson, G.J., Payne, M.R., Richardson, D.E., Senina, I., Speirs, D.C., 2014. Comparative ecology of widely distributed pelagic fish species in the North Atlantic: Implications for modelling climate and fisheries impacts. Prog. Oceanogr. 129, 219–243. https://doi.org/10.1016/j.pocean.2014.04.030
Valencia-Gasti, J.A., Baumgartner, T., Durazo, R., 2015. Efectos del clima oceánico sobre el ciclo de vida y distribución de peces pelágicos menores en el Sistema de la Corriente de California, frente a Baja California. Ciencias Mar. https://doi.org/10.7773/cm.v41i4.2571
Wassmann, P., 2011. Arctic marine ecosystems in an era of rapid climate change. Prog. Oceanogr. 90, 1–17. https://doi.org/10.1016/j.pocean.2011.02.002
Wei, H., Jia, K., Wang, Q., Cao, B., Qi, J., Zhao, W., Yang, J., 2023. Real-time remote sensing detection framework of the earth’s surface anomalies based on a priori knowledge base. Int. J. Appl. Earth Obs. Geoinf. 122. https://doi.org/10.1016/j.jag.2023.103429
Wijaya, A., Zakiyah, U., Sambah, A.B., Setyohadi, D., 2020. Spatio-temporal variability of temperature and chlorophyll-a concentration of sea surface in Bali strait, Indonesia. Biodiversitas 21, 5283–5290. https://doi.org/10.13057/biodiv/d211132
Wisha, U.J., Wijaya, Y.J., Hisaki, Y., 2023. Sea Level Variability in the Equatorial Malacca Strait: The Influence of Climatic–Oceanographic Factors and Its Implications for Tidal Properties in the Estuarine Zone. Climate 11. https://doi.org/10.3390/cli11030070
Wiyono, E.K.O.S.R.I., Zainuddin, M., Syamsuddin, M.L., 2024. Measuring indices of fish community structure in Fisheries Management Area 713 ( FMA 713 ), Indonesia 25, 1857–1866. https://doi.org/10.13057/biodiv/d250501
Wyrtki, K., 1961. Physical Oceanography of the Southeast Asian Waters.
Yang, Z., Chen, W., Wang, X., Liu, B., Dong, J., Deng, Y., 2024. Suitable habitat of the scad fish (Decanters spp.) in Northern South China Sea predicted by MaxEnt model. Reg. Stud. Mar. Sci. 69. https://doi.org/10.1016/j.rsma.2023.103315
Yasumiishi, E.M., Cieciel, K., Andrews, A.G., Murphy, J., Dimond, J.A., 2020. Climate-related changes in the biomass and distribution of small pelagic fishes in the eastern Bering Sea during late summer, 2002–2018. Deep. Res. Part II Top. Stud. Oceanogr. 181–182, 104907. https://doi.org/10.1016/j.dsr2.2020.104907
Yu, Z., Wong, M.K.S., Inoue, J., Ahmed, S.I., Higuchi, T., Hyodo, S., Itoh, S., Komatsu, K., Saito, H., Ito, S.I., 2023. Environmental DNA in the Kuroshio reveals environment-dependent distribution of economically important small pelagic fish. Front. Mar. Sci. 10, 1–20. https://doi.org/10.3389/fmars.2023.1121088
Yuan, H., Shen, X., Chen, X., 2011. Prediction of fishing ground based on RBF neural network, in: Procedia Engineering. pp. 3240–3244. https://doi.org/10.1016/j.proeng.2011.08.608
Zainuddin, M., 2018. Effects of environmental factors on anchovies Stolephorus sp distribution in Bone Gulf, Indonesia. Bioflux.
Zainuddin, M., Chair Rani, dan, 2014. Predicting Potential Fishing Zones of Large Pelagic Fish in Mamuju Regency Waters, Jurnal IPTEKS PSP.
Zeeberg, J., Corten, A., Tjoe-awie, P., Coca, J., Hamady, B., 2008. Climate modulates the effects of Sardinella aurita fisheries off Northwest Africa 89, 65–75. https://doi.org/10.1016/j.fishres.2007.08.020
Zhang, K., Li, M., Li, J., Sun, M., Xu, Y., Cai, Y., Chen, Z., Qiu, Y., 2022. Climate-induced small pelagic fish blooms in an overexploited marine ecosystem of the South China Sea. Ecol. Indic. 145. https://doi.org/10.1016/j.ecolind.2022.109598
Zhu, Y., Cui, X., Kang, B., Liu, C., Reygondeau, G., Wang, Y., Cheung, W.W.L., Chu, J., 2024. Comparative analysis of climate-induced changes in distribution of representative fish species in the Yellow Sea. Sci. Total Environ. 912, 168699. https://doi.org/10.1016/j.scitotenv.2023.168699
Zuloaga, R., Almarza, O., Valdés, J.A., Molina, A., Pulgar, J., 2018. Oceanographic upwelling conditions influence signaling pathways involved in muscle growth of intertidal fish. Comp. Biochem. Physiol. Part - B Biochem. Mol. Biol. 218, 37–43. https://doi.org/10.1016/j.cbpb.2018.02.001

Most read articles by the same author(s)

1 2 > >>