Mapping potential fishing zones for skipjack tuna in the southern Makassar Strait, Indonesia, using Pelagic Habitat Index (PHI)

##plugins.themes.bootstrap3.article.main##

ANDI RANI SAHNI PUTRI
MUKTI ZAINUDDIN
MUSBIR
RACHMAT HIDAYAT
MUZZNEENA AHMAD MUSTAPHA

Abstract

Abstract. Putri ARS, Zainuddin M, Musbir, Mustapha MA, Hidayat R. 2021. Mapping potential fishing zones for skipjack tuna in the southern Makassar Strait, Indonesia, using Pelagic Habitat Index (PHI). Biodiversitas 22: 3037-3045. Southern Makassar Strait is one of the potential fishing grounds for skipjack tuna in the Indonesian waters. Oceanographic factors become the primary factors that limit the distribution and abundance of fish. The study aimed to identify the relationship between fish distribution with sea surface temperature (SST) and primary productivity (PP) and map out the potential fishing grounds of skipjack tuna in the southern Makassar Strait. It used pelagic habitat index (PHI) analysis, which is strengthened by the results of correlation analysis in the form of generalized additive models (GAM) and Empirical cumulative distribution function (ECDF) analysis. The results showed that the distribution of skipjack tuna was significantly associated with the preferred range of SST 29-30.5°C and PP 350-400 mg C/m2/day. The potential fishing zone is well established near the coast to offshore of Barru and Polman waters (3°-6°S and 117°-119°E), with the peak season in May and October. The spatial pattern of potential fishing grounds for skipjack fishing is associated with hotspots (oceanographic preference), leading to increased feeding opportunities. This study suggests that the spatial pattern of high potential fishing zones could improve fishing, management, and conservation strategies along the southern Makassar Strait.

##plugins.themes.bootstrap3.article.details##

References
Andrade HA, Alberto C, Garcia E. 1999. Skipjack tuna fishery in relation to sea surface temperature off the southern Brazilian coast. Fish. Oceanogr. 8(4): 245–54. https://doi.org/10.1046/j.1365–2419.1999.00107.x
Ashida H. 2020. Spatial and temporal differences in the reproductive traits of skipjack tuna Katsuwonus pelamis between the subtropical and temperate western Pacific Ocean. Fish. Res. 221(December 2018): 105352 1–13. https://doi.org/10.1016/j.fishres.2019.105352
Barkley RA, Neill WH, Gooding RM. 1978. Skipjack tuna, Katsuwonus pelamis, habitat based on temperature and oxygen requirements. Fish. Bull. 76(3): 653–62.
Boyce DG, Tittensor DP, Worm B. 2008. Effects of temperature on global patterns of tuna and billfish richness. Mar. Ecol. Prog. Ser. 355: 267–76.
Chen X, Li G, Feng B, Tian S. 2009. Habitat suitability index of chub mackerel (Scomber iaponicus) from July to September in the East China Sea. J. Oceanogr. 65(1): 93–102. https://doi.org/10.1007/s10872-009-0009-9
DKP. 2016. South Sulawesi Fisheries Statistics Data. Marine and Fisheries Services.
Drinkwater KF, Beaugrand G, Kaeriyama M, Kim S, Ottersen G, Perry RI, Pörtner HO, Polovina JJ, Takasuka A. 2010. On the processes linking climate to ecosystem changes. J. Mar. Syst. 79(3–4): 374–88. http://dx.doi.org/10.1016/j.jmarsys.2008.12.014
Fan W, Jian Z, Bassinot F, Chu Z. 2013. Holocene centennial-scale changes of the Indonesian and South China Sea throughflows: evidences from the Makassar Strait. Glob. Planet. Change 111: 111–17. http://dx.doi.org/10.1016/j.gloplacha.2013.08.017
Fromentin JM, Reygondeau G, Sylvain BS, Beaugrand G, Bonhommeau S, Beaugrand G. 2014. Oceanographic changes and exploitation drive the spatio-temporal dynamics of Atlantic bluefin tuna (Thunnus thynnus). Fish. Oceanogr. 23(2): 147–56.
Grande M, Murua H, Zudaire I, Arsenault-Pernet EJ, Pernet F, Bodin N. 2016. Energy allocation strategy of skipjack tuna Katsuwonus pelamis during their reproductive cycle. J. Fish Biol. 89(5): 2434–48. https://onlinelibrary.wiley.com/doi/abs/10.1111/jfb.13125
Hall M, Roman M. 2013. Bycatch and non-tuna catch in the tropical tuna purse seine fisheries of the world. Rome: FAO Fisheries and Aquaculture Technical Paper No. 568, FAO. http://www.fao.org/
Hermida M, Cavaleiro B, Gouveia L, Saraiva A. 2019. Seasonality of skipjack tuna parasites in the eastern Atlantic provide an insight into its migratory patterns. Fish. Res. 216(April): 167–73. https://doi.org/10.1016/j.fishres.2019.04.010
Hidayat R, Zainuddin M, Putri ARS, Safruddin. 2019. Skipjack tuna (katsuwonus pelamis) catches in relation to chlorophyll-a front in bone gulf during the southeast monsoon. AACL Bioflux, 12(1), 209–218.
Irianto HE, Wudianto W, Nugraha B, Widodo AA, Satria F, Sadiyah L. 2015. Indonesia national report to the scientific committee of the Indian Ocean Tuna Commission, 2015. Indian Ocean Tuna Commission, IOTC-2015-(Rev_1): 1–27.
Iwatani H, Yasuhara M, Rosenthal Y, Linsley BK. 2018. Intermediate-water dynamics and ocean ventilation effects on the Indonesian throughflow during the past 15,000 years: Ostracod Evidence. Geology 46(6): 567–70. https://doi.org/10.1130/G40177.1
Kiyofuji H, Aoki Y, Kinoshita J, Okamoto S, Masujima M, Matsumoto T, Fujioka K, Ogata R, Nakao T, Sugimoto N, Kitagawa T. 2019. Northward migration dynamics of skipjack tuna (Katsuwonus pelamis) associated with the lower thermal limit in the western Pacific Ocean. Prog. Oceanogr. 175: 55–67. https://doi.org/10.1016/j.pocean.2019.03.006
Lehodey P, Bertignac M, Hampton J, Lewis A, Picaut J. 1997. El Nino southern oscillation and tuna in the western Pacific. Nature 389: 715–18. https://doi.org/10.1038/39575
Li M, Gordon AL, Wei J, Gruenburg LK, Jiang G. 2018. Multi-decadal timeseries of the Indonesian throughflow. Dyn. Atmos. Oceans 81: 84–95. http://dx.doi.org/10.1016/j.dynatmoce.2018.02.001
Matsumoto W, Skillman R, Dizon A. 1984. Synopsis of biological data on skipjack tuna, Katsuwonus pelamis. In FAO Fisheries Synopsis (Issue January 1984). http://www.fao.org/docrep/017/ap940e/ap940e.pdf
McKechnie S, Hampton J, Pilling GM, Davies N. 2016. Stock Assessment of Skipjack Tuna in the Western and Central Pacific Ocean. Western and Central Pacific Fisheries Commission, Scientific Committee SC12: 1–120.
Mugo R, Saitoh SI, Nihira A, Kuroyama T. 2010. Habitat characteristics of skipjack tuna (Katsuwonus pelamis) in the western North Pacific: a remote sensing perspective. Fish. Oceanogr. 19(5): 382–96. https://doi.org/10.1111/j.1365-2419.2010.00552.x
Muhling BA, Liu Y, Lee S-K, Lamkin JT, Roffer MA, Muller-Karger F, Walter JF. 2015. Potential impact of climate change on the Intra-Americas Sea: Part 2. Implications for Atlantic bluefin tuna and skipjack tuna adult and larval habitats. J. Mar. Syst. 148: 1–13. http://dx.doi.org/10.1016/j.jmarsys.2015.01.010
Nurdin S, Mustapha MA, Lihan T, Zainuddin M. 2017. Applicability of remote sensing oceanographic data in the detection of potential fishing grounds of Rastrelliger kanagurta in the archipelagic waters of spermonde, Indonesia. Fish. Res. 196 (August 2016): 1–12. http://dx.doi.org/10.1016/j.fishres.2017.07.029
Putri ARS, Zainuddin M. 2019. Impact of climate changes on skipjack tuna (Katsuwonus pelamis) catch during May-July in the Makassar Strait. IOP Conf. Ser. Earth Environ. Sci. 253(1): 012046 1–9. https://doi.org/10.1088/1755-1315/253/1/012046
Putri ARS, Zainuddin M, Putri RS. 2018a. Effect of climate change on the distribution of skipjack tuna Katsuwonus pelamis catch in the Bone Gulf, Indonesia, during the southeast monsoon. AACL Bioflux 11(2): 439–51.
Putri RS, Jaya I, Pujiyati S, Priatna A, Makmun A, Suman A. 2018b. Acoustic approach for estimation of skipjack (Katsuwonus pelamis) abundance in Bone Bay. IOP Conf. Ser. Earth Environ. Sci. 176(1): 012033 1-8.
Sartimbul A, Nakata H, Rohadi E, Yusuf B, Kadarisman HP. 2010. Variations in chlorophyll-a concentration and the impact on Sardinella lemuru catches in Bali Strait, Indonesia. Prog. Oceanogr. 87(1–4): 168–74. http://dx.doi.org/10.1016/j.pocean.2010.09.002
Schaefer KM, Fuller DW. 2019. Spatiotemporal variability in the reproductive dynamics of skipjack tuna (Katsuwonus pelamis) in the eastern Pacific Ocean. Fish. Res. 209(August 2018): 1–13. https://doi.org/10.1016/j.fishres.2018.09.002
Sigman DM, Hain MP. 2012. The biological productivity of the ocean. Nat. Educ. 3(6): 1–16. https://www.researchgate.net/publication/267325133_The_Biological_Productivity_of_the_Ocean
Sukresno B, Hartoko A, Sulistyo B. 2015. Empirical cumulative distribution function (ECDF) analysis of Thunnus Sp. using ARGO float sub-surface multilayer temperature data in Indian Ocean south of Java. Procedia Environ. Sci. 23(Ictcred 2014): 358–67. http://dx.doi.org/10.1016/j.proenv.2015.01.052
Venegas R, Oliver T, Brainard RE, Santos M, Geronimo R, Widlansky M. 2019. Climate-induced vulnerability of fisheries in the Coral Triangle: Skipjack Tuna thermal spawning habitats. Fisheries Oceanography, 28(2), 117–130. https://doi.org/10.1111/fog.12390
Wang J, Chen X, Staples KW, Chen Y. 2018. The skipjack tuna fishery in the west-central Pacific Ocean: applying neural networks to detect habitat preferences. Fish. Sci. 84(2): 309–21. https://doi.org/10.1007/s12562-017-1161-6
Yen K, Wang G, Lu H. 2017. Evaluating habitat suitability and relative abundance of skipjack (Katsuwonus pelamis) in the western and central Pacific during various El Niño events. Ocean Coast. Manag. 139: 153–60. http://dx.doi.org/10.1016/j.ocecoaman.2017.02.011
Zainuddin M. 2011. Skipjack tuna in relation to sea surface temperature and chlorophyll-a concentration of Bone Bay using remotely sensed satellite data. J. Ilmu dan Teknol. Kelaut. Trop. 3(1): 82–90. https://doi.org/10.29244/jitkt.v3i1.7837
Zainuddin M, Nelwan A, Farhum SA, Hajar MAI, Kurnia MS. 2013. Characterizing potential fishing zone of skipjack tuna during the southeast monsoon in the Bone Bay-Flores Sea using remotely sensed oceanographic data. Int. J. Geosci. 04(01): 259–66.
Zainuddin M, Farhum A, Safruddin S, Selamat MB, Sudirman S, Nurdin N, Syamsuddin M, Ridwan M, Saitoh I. 2017. Detection of pelagic habitat hotspots for skipjack tuna in the Gulf of Bone-Flores Sea, southwestern Coral Triangle tuna, Indonesia. PLoS ONE 12(10): 1–19. https://doi.org/10.1371/journal.pone.0185601

Most read articles by the same author(s)