Mapping spatial-temporal skipjack tuna habitat as a reference for Fish Aggregating Devices (FADs) settings in Makassar Strait, Indonesia

##plugins.themes.bootstrap3.article.main##

RACHMAT HIDAYAT
https://orcid.org/0000-0003-1664-0515
MUKTI ZAINUDDIN
https://orcid.org/0000-0003-2018-7143
ACHMAR MALLAWA
https://orcid.org/0000-0001-6072-1705
MUZZNEENA AHMAD MUSTAPHA
https://orcid.org/0000-0003-4533-3573
A. RANI SAHNI PUTRI
https://orcid.org/0000-0001-7955-2497

Abstract

Abstract. Hidayat R, Zainuddin M, Mallawa A, Mustapha MA, Putri ARS. 2021. Mapping spatial-temporal skipjack tuna habitat as a reference for Fish Aggregating Devices (FADs) settings in Makassar Strait, Indonesia. Biodiversitas 22: 3637-3647. Skipjack tuna (Katsuwonus pelamis) has a high economic value in the international market. Catching skipjack tuna using fish aggregating devices (FADs) without knowing its habitat characteristics can damage the ecosystem. This study aimed to determine suitable fishing areas for setting skipjack’s FADs. The data used included that on catch, sea surface temperature (SST), and sea surface chlorophyll-a (SSC) in the Makassar Strait obtained for 2017-2019. The generalized additive model (GAM) and empirical cumulative distribution function (ECDF) analyses were used to investigate the skipjack’s tuna habitat. A pelagic habitat index (PHI), with PHI > 75%, was applied to determine suitable FAD positions. The gravity center of the skipjack tuna habitat for ten months (January-October 2020) was calculated to validate the model’s results. The results showed that the optimum SST range was from 28.78°C to 31.25°C, while the SSC from 0.18 to 0.28 mg m-3. The best skipjack habitats in the southern Makassar Strait are criterion 4 (PHI > 90%) and criterion 3 (PHI = 85-90%), having a relatively high consistency of the average PHI values. These results can help determine the optimal positions for setting FADs to benefit the global management and sustainable development of skipjack tuna fisheries.

##plugins.themes.bootstrap3.article.details##

References
Andrade, H.A., 2003. The relationship between the skipjack tuna (Katsuwonus pelamis) fishery and seasonal temperature variability in the south-western Atlantic. Fish. Oceanogr. 12: 10–18. https://doi.org/10.1046/j.1365-2419.2003.00220.x
Andrade, H.A., Garcia, C.A.E., 1999. Skipjack tuna fishery in relation to sea surface temperature off the southern Brazilian coast. Fish. Oceanogr. 8: 245–254. https://doi.org/10.1046/j.1365-2419.1999.00107.x
Artetxe-Arrate, I., Fraile, I., Marsac, F., Farley, J.H., Rodriguez-Ezpeleta, N., Davies, C.R., Clear, N.P., Grewe, P., Murua, H., 2020. A review of the fisheries, life history and stock structure of tropical tuna (skipjack Katsuwonus pelamis, yellowfin Thunnus albacares and bigeye Thunnus obesus) in the Indian Ocean, 1st ed, Advances in Marine Biology. Elsevier Ltd. https://doi.org/10.1016/bs.amb.2020.09.002
Atmadipoera, A.S., Widyastuti, P., 2015. a Numerical Modeling Study on Upwelling Mechanism in Southern Makassar Strait. J. Ilmu dan Teknol. Kelaut. Trop. 6: 355–372. https://doi.org/10.29244/jitkt.v6i2.9012
Cheung, W.W.L., Lam, V.W.Y., Sarmiento, J.L., Kearney, K., Watson, R., Pauly, D., 2009. Projecting global marine biodiversity impacts under climate change scenarios. Fish Fish. 10: 235–251. https://doi.org/10.1111/j.1467-2979.2008.00315.x
Cheung, W.W.L., Pitcher, T.J., Pauly, D., 2005. A fuzzy logic expert system to estimate intrinsic extinction vulnerabilities of marine fishes to fishing. Biol. Conserv. 124: 97–111. https://doi.org/10.1016/j.biocon.2005.01.017
Davies, T.K., Mees, C.C., Milner-Gulland, E.J., 2014. The past, present and future use of drifting fish aggregating devices (FADs) in the Indian Ocean. Mar. Policy 45: 163–170. https://doi.org/10.1016/j.marpol.2013.12.014
Duffy, L.M., Kuhnert, P.M., Pethybridge, H.R., Young, J.W., Olson, R.J., Logan, J.M., Goñi, N., Romanov, E., Allain, V., Staudinger, M.D., Abecassis, M., Choy, C.A., Hobday, A.J., Simier, M., Galván-Magaña, F., Potier, M., Ménard, F., 2017. Global trophic ecology of yellowfin, bigeye, and albacore tunas: Understanding predation on micronekton communities at ocean-basin scales. Deep. Res. Part II Top. Stud. Oceanogr. 140: 55–73. https://doi.org/10.1016/j.dsr2.2017.03.003
FAO, 2016. The State of World Fisheries and Aquaculture 2016. Contributing to Food Security and Nutrition for All. FAO, Rome.
FAO, 2018. The State of World Fisheries and Aquaculture 2018. Meeting the Sustainable Development Goals. FAO, Rome.
França, S., Vasconcelos, R.P., Fonseca, V.F., Tanner, S.E., Reis-Santos, P., Costa, M.J., Cabral, H.N., 2012. Predicting fish community properties within estuaries: Influence of habitat type and other environmental features. Estuar. Coast. Shelf Sci. 107: 22–31. https://doi.org/10.1016/j.ecss.2012.04.013
Galland, G., Rogers, A., Nickson, A., 2016. Netting billions: a global valuation of tuna. Pew Charitible Trust 1–22.
Gordon, A.L., 2005. Oceanography of the Indonesia Seas and Their Throughflow. Oceanography 18: 14–27. https://doi.org/https://doi.org/10.5670/oceanog.2005.01
Hallier, J.P., Gaertner, D., 2008. Drifting fish aggregation devices could act as an ecological trap for tropical tuna species. Mar. Ecol. Prog. Ser. 353: 255–264. https://doi.org/10.3354/meps07180
Hidayat, R., Zainuddin, M., 2019. Detection of cyclonic and anti-cyclonic eddy in relation to potential Skipjack Tuna fishing ground in Makassar Strait. IOP Conf. Ser. Earth Environ. Sci. 241: 012011. https://doi.org/10.1088/1755-1315/241/1/012011
Hidayat, R., Zainuddin, M., Mallawa, A., Ahmad Mustapha, M., Safruddin, Rani Sahni Putri, A., 2020. Estimating potential fishing zones for Skipjack Tuna (Katsuwonus pelamis) Abundance in Southern Makassar Strait. IOP Conf. Ser. Earth Environ. Sci. 564: 012082. https://doi.org/10.1088/1755-1315/564/1/012082
Hidayat, R, Zainuddin, M., Safruddin, S., Mallawa, A., Farhum, S.A., 2019a. Skipjack Tuna (Katsuwonus pelamis) catch in relation to the Thermal and Chlorophyll-a Fronts during May – July in the Makassar Strait. IOP Conf. Ser. Earth Environ. Sci. 253: 012045. https://doi.org/10.1088/1755-1315/253/1/012045
Hidayat, Rachmat, Zainuddin, M., Sahni Putri, A.R., 2019b. Skipjack tuna (Katsuwonus pelamis) catches in relation to chlorophyll-a front in Bone Gulf during the southeast monsoon. AACL Bioflux 12: 209–218.
Iskandar, I., Sari, Q.W., Setiabudiday, D., Yustian, I., Monger, B., 2017. The distribution and variability of chlorophyll-a bloom in the southeastern tropical Indian ocean using empirical orthogonal function analysis. Biodiversitas 18: 1546–1555. https://doi.org/10.13057/biodiv/d180433
ISSF, 2020. Status of the World Fisheries for Tuna. ISSF Technical Report 2020–12, Washington, D.C., USA.
Johnson, J.B., Omland, K.S., 2004. Model selection in ecology and evolution. Trends Ecol. Evol. 19: 101–108. https://doi.org/10.1016/j.tree.2003.10.013
Khan, A.M.A., Gray, T.S., Mill, A.C., Polunin, N.V.C., 2018. Impact of a fishing moratorium on a tuna pole-and-line fishery in eastern Indonesia. Mar. Policy 94: 143–149. https://doi.org/10.1016/j.marpol.2018.05.014
Khan, A.M.A., Nasution, A.M., Purba, N.P., Rizal, A., Hamdani, H., Dewanti, L.P., Nurruhwati, I., Sahidin, A., Supriyadi, D., Herawati, H., Apriliani, I.M., Ridwan, M., Gray, T.S., Jiang, M., Arief, H., Mill, A.C., Polunin, N.V.C., 2020. Oceanographic characteristics at fish aggregating device sites for tuna pole and line fishery in eastern Indonesia. Fish. Res. 225: 105471. https://doi.org/10.1016/j.fishres.2019.105471
Kiyofuji, H., Aoki, Y., Kinoshita, J., Okamoto, S., Masujima, M., Matsumoto, T., Fujioka, K., Ogata, R., Nakao, T., Sugimoto, N., Kitagawa, T., 2019. Northward migration dynamics of skipjack tuna (Katsuwonus pelamis) associated with the lower thermal limit in the western Pacific Ocean. Prog. Oceanogr. 175: 55–67. https://doi.org/10.1016/j.pocean.2019.03.006
KKP, 2017. Decree of the Ministry of Marine Affairs and Fisheries of the Republic of Indonesia Number 50/KEPMEN-KP/2017on Stock Estimation, Allowable Catch, and Exploitation Levels of Fisheries Resoruces in the Indonesian Fisheries Management Areas 8 pp.
Lezama-Ochoa, N., Murua, H., Ruiz, J., Chavance, P., Delgado de Molina, A., Caballero, A., Sancristobal, I., 2018. Biodiversity and environmental characteristics of the bycatch assemblages from the tropical tuna purse seine fisheries in the eastern Atlantic Ocean. Mar. Ecol. 39: 1–18. https://doi.org/10.1111/maec.12504
Macusi, E.D., Abreo, N.A.S., Babaran, R.P., 2017a. Local ecological knowledge (LEK) on fish behavior around anchored FADs: The case of tuna purse seine and ringnet fishers from Southern Philippines. Front. Mar. Sci. 4: 1–13. https://doi.org/10.3389/fmars.2017.00188
Macusi, E.D., Katikiro, R.E., Babaran, R.P., 2017b. The influence of economic factors in the change of fishing strategies of anchored FAD fishers in the face of declining catch, General Santos City, Philippines. Mar. Policy 78: 98–106. https://doi.org/10.1016/j.marpol.2017.01.016
Malakoff, D., 2004. New Tools Reveal Treasures at Ocean Hot Spots. Mar. Sci. 304: 1104–1105. https://doi.org/10.1126/science.304.5674.1104
Marsac, F., Fonteneau, A., Ménard, F., 2000. Drifting FADs used in tuna fisheries: an ecological trap? Proc. 1st Symp. Tuna Fish. FADs, Martinique, Oct. 1999 537–552.
Marshall, C.T., Morgan, M.J., Murua, H., Kraus, G., Lambert, Y., Marteinsdo, G., Brien, L.O., Tomkiewicz, J., 2009. The evaluation of reference points and stock productivity in the context of alternative indices of stock reproductive potential. Can. J. Fish. Aquat. Sci. 66: 404–414. https://doi.org/10.1139/F09-009
Matsumoto, T., Satoh, K., Semba, Y., Toyonaga, M., 2016. Comparison of the behavior of skipjack (Katsuwonus pelamis), yellowfin (Thunnus albacares) and bigeye (T. obesus) tuna associated with drifting FADs in the equatorial central Pacific Ocean. Fish. Oceanogr. 25: 565–581. https://doi.org/10.1111/fog.12173
Mugo, R., Saitoh, S.-I., Nihira, A., Kuroyama, T., 2010. Habitat characteristics of skipjack tuna (Katsuwonus pelamis) in the western North Pacific: a remote sensing perspective. Fish. Oceanogr. 19: 382–396. https://doi.org/10.1111/j.1365-2419.2010.00552.x
Muskananfola, M.R., Jumsar, Wirasatriya, A., 2021. Spatio-temporal distribution of chlorophyll-a concentration, sea surface temperature and wind speed using aqua-modis satellite imagery over the Savu Sea, Indonesia. Remote Sens. Appl. Soc. Environ. 22: 100483. https://doi.org/10.1016/j.rsase.2021.100483
Nuzula, F., Syamsudin, M.L., Yuliadi, L.P.S., Purba, N.P., Martono, 2017. Eddies spatial variability at Makassar Strait – Flores Sea. IOP Conf. Ser. Earth Environ. Sci. 54: 012079. https://doi.org/10.1088/1755-1315/54/1/012079
Olson, R.J., Young, J.W., Ménard, F., Potier, M., Allain, V., Goñi, N., Logan, J.M., Galván-Magaña, F., 2016. Bioenergetics, Trophic Ecology, and Niche Separation of Tunas. Adv. Mar. Biol. 74: 199–344. https://doi.org/10.1016/bs.amb.2016.06.002
Palacios, D.M., Bograd, S.J., Foley, D.G., Schwing, F.B., 2006. Oceanographic characteristics of biological hot spots in the North Pacific: A remote sensing perspective. Deep. Res. Part II Top. Stud. Oceanogr. 53: 250–269. https://doi.org/10.1016/j.dsr2.2006.03.004
Polovina, J.J., Howell, E.A., 2005. Ecosystem indicators derived from satellite remotely sensed oceanographic data for the North Pacific. ICES J. Mar. Sci. 62: 319–327. https://doi.org/10.1016/j.icesjms.2004.07.031
Rodriguez-Tress, P., Capello, M., Forget, F., Soria, M., Beeharry, S.P., Dussooa, N., Dagorn, L., 2017. Associative behavior of yellowfin Thunnus albacares, skipjack Katsuwonus pelamis, and bigeye tuna T. obesus at anchored fish aggregating devices (FADs) off the coast of Mauritius. Mar. Ecol. Prog. Ser. 570: 213–222. https://doi.org/10.3354/meps12101
Safruddin, Hidayat, R., Zainuddin, M., 2018. Effects of environmental factors on anchovies stolephorus sp distribution in bone Gulf, Indonesia. AACL Bioflux 11: 387–393.
Sari, Q.W., Siswanto, E., Setiabudidaya, D., Yustian, I., Iskandar, I., 2018. Spatial and temporal variability of surface chlorophyll-a in the gulf of Tomini, Sulawesi, Indonesia. Biodiversitas 19: 743–751. https://doi.org/10.13057/biodiv/d190306
Susanto, R.D., Moore, T.S., Marra, J., 2006. Ocean color variability in the Indonesian Seas during the SeaWiFS era. Geochemistry, Geophys. Geosystems 7: 1–16. https://doi.org/10.1029/2005GC001009
Sydeman, W.J., Richard D., B., Churchill B., G., Alexander S., B., McKinnell, S., 2006. Marine habitat ‘“hotspots”’ and their use by migratory species and top predators in the North Pacific Ocean: Introduction. Deep. Res. II 53: 247–249. https://doi.org/10.1016/j.dsr2.2006.03.001
Takarina, N.D., Nurliansyah, W., Wardhana, W., 2019. Relationship between environmental parameters and the Plankton community of the Batuhideung fishing grounds, Pandeglang, Banten, indonesia. Biodiversitas 20: 171–180. https://doi.org/10.13057/biodiv/d200120
Taquet, M., 2013. Fish aggregating devices (FADs): good or bad fishing tools? A question of scale and knowledge. Aquat. Living Resour. 26: 25–35. https://doi.org/10.1051/alr/2013043
Tseng, C. Te, Sun, C.L., Yeh, S.Z., Shih-Chin, C., Su, W.C., 2010. Spatio-temporal distributions of tuna species and potential habitats in the Western and Central Pacific Ocean derived from multi-satellite data. Int. J. Remote Sens. 31: 4543–4558. https://doi.org/10.1080/01431161.2010.485220
Wang, J., Chen, X., Chen, Y., 2016. Spatio-temporal distribution of skipjack in relation to oceanographic conditions in the west-central Pacific Ocean. Int. J. Remote Sens. 37: 6149–6164. https://doi.org/10.1080/01431161.2016.1256509
Wijaya, A., Zakiyah, U., Sambah, A.B., Setyohadi, D., 2020. Spatio-temporal variability of temperature and chlorophyll-a concentration of sea surface in Bali Strait, Indonesia. Biodiversitas J. Biol. Divers. 21: 5283–5290. https://doi.org/10.13057/biodiv/d211132
Worm, B., Lotze, H.K., Myers, R.A., 2003. Predator diversity hotspots in the blue ocean. Proc. Natl. Acad. Sci. U. S. A. 100: 9884–9888. https://doi.org/10.1073/pnas.1333941100
Zainuddin, M., Amir, M.I., Bone, A., Farhum, S.A., Hidayat, R., Putri, A.R.S., Mallawa, A., Safruddin, Ridwan, M., 2019. Mapping distribution patterns of skipjack tuna during January-May in the Makassar Strait. IOP Conf. Ser. Earth Environ. Sci. 370: 012004. https://doi.org/10.1088/1755-1315/370/1/012004
Zainuddin, M., Farhum, A., Safruddin, S., Selamat, M.B., Sudirman, S., Nurdin, N., Syamsuddin, M., Ridwan, M., Saitoh, S.I., 2017. Detection of pelagic habitat hotspots for skipjack tuna in the Gulf of Bone-Flores Sea, southwestern Coral Triangle tuna, Indonesia. PLoS One 12: 1–19. https://doi.org/10.1371/journal.pone.0185601
Zainuddin, M., Nelwan, A., Farhum, S.A., N., Hajar, M.A.I., Kurnia, M., S., 2013. Characterizing Potential Fishing Zone of Skipjack Tuna during the Southeast Monsoon in the Bone Bay-Flores Sea Using Remotely Sensed Oceanographic Data. Int. J. Geosci. 04: 259–266. https://doi.org/10.4236/ijg.2013.41a023
Zainuddin, M., Saitoh, K., Saitoh, S.I., 2008. Albacore (Thunnus alalunga) fishing ground in relation to oceanographic conditions in the western North Pacific Ocean using remotely sensed satellite data. Fish. Oceanogr. 17: 61–73. https://doi.org/10.1111/j.1365-2419.2008.00461.x

Most read articles by the same author(s)