Feeding habits of Gobiopterus brachypterus (Gobiiformes: Oxudercidae) in Ranu Grati Lake, East Java, Indonesia and their relationship with food availability

##plugins.themes.bootstrap3.article.main##

SEPTI ANITASARI
DIANA ARFIATI
SUSILO
AGUNG PRAMANA WARIH MARHENDRA

Abstract

Abstract. Anitasari S, Arfiati D, Susilo, Marhendra APW. 2024. Feeding habits of Gobiopterus brachypterus (Gobiiformes: Oxudercidae) in Ranu Grati Lake, East Java, Indonesia and their relationship with food availability. Biodiversitas 25: 2925-2936. Ranu Grati, a volcanic lake located in Pasuruan District, East Java, Indonesia, is home to the endemic Gobiopterus brachypterus (Bleeker 1855) locally known as the lempuk fish. This research aims to elucidate the feeding habits of G. brachypterus and their relationship with food availability in Ranu Grati. The study investigates the food ecology of including their diet composition, habitat preferences, and feeding habits in relation to natural food availability including plankton abundance, relative abundance, uniformity index, dominance index plankton sampling was conducted at five stations by with the samples preserved in formalin and concentrated in the lab for analysis under a microscope. Fish were also collected at these stations using random sampling, dissected in the field, and their digestive tracts were preserved and later examined microscopically to identify the food types down to the lowest taxonomic level. The results reveal that the phytoplankton community in Ranu Grati Lake includes nine classes: Bacillariophyceae, Chlorophyceae, Cyanophyceae, Coscinodiscophyceae, Trebouxiophyceae, Dinophyceae, Zygnematophyceae, Raphidophyceae, and Euglenoidea. The zooplankton community comprises four classes: Monogononta, Copepoda, Branchiopoda, and Tubulinea. Phytoplankton in Ranu Grati Lake exhibit high diversity, with a diversity index of 3.739, and high uniformity, indicated by an evenness index of 0.957, showing no dominance (dominance index: 0.115). In contrast, zooplankton demonstrate moderate diversity (diversity index: 2.528), moderate evenness (evenness index: 0.647), and similarly show no dominance (dominance index: 0.216). The relative lengths of the intestines of G. brachypterus. are 0.163 and 0.132, indicating a carnivorous diet. The index of preponderance values highlights that Bacillaria sp., Oscillatoria sp., Microcystis sp., Oocystis sp., and Volvox sp. are significant dietary components for G. brachypterus, whereas Pinnularia sp., Entomoneis sp., Cymbella sp., Thalassiosira sp. and others contribute minimally or are absent. This highlights the dietary preferences of G. brachypterus. The stomach contents confirm that G. brachypterus exhibit a preference for phytoplankton, demonstrating opportunistic, carnivorous feeding behavior based on the availability of food in their natural environment.

##plugins.themes.bootstrap3.article.details##

References
Abrantes KG, Barnett A, Baker R & Sheaves M.2015. Habitat-specific food webs and trophic interactions supporting coastal-dependent fishery species: an Australian case study. Reviews in Fish Biology and Fisheries, 25, 337-363. DOI 10.1007/s11160-015-9385-y
Alprol AE, Heneash AM, Soliman AM, Ashour M, Alsanie WF, Gaber A & Mansour A T. 2021. Assessment of water quality, eutrophicati, and zooplankton community in Lake Burullus, Egypt. Diversity, 13(6), 268. https://doi.org/10.3390/d13060268
Amundsen PA & Sánchez?Hernández J.2019. Feeding studies take guts–critical review and recommendations of methods for stomach contents analysis in fish. Journal of Fish Biology. 95(6). 1364-1373. https://doi.org/10.1111/jfb.14151
Anitasari S, Arfiati D, Susilo S & Marhendra APW.2024. Morphological characteristics of sex dimorphism in Gobiopterus sp.(Gobiiformes: Oxudercidae) from Ranu Grati Lake, Pasuruan District, East Java, Indonesia. Biodiversitas Journal of Biological Diversity, 25(3). DOI: 10.13057/biodiv/d250337
Archibald JM, Simpson AG & Slamovits CH (Eds.). 2017. Handbook of the Protists (Vol. 10, pp. 978-3). Cham, Switzerland: Springer.
Arfiati D, Zakiyah U, Anitasari S, Inayah ZN, Orchida K & Pratiwi RK.2024. Plankton diversity in the Rowo Klampok Swamp, Malang District, East Java, Indonesia. Biodiversitas Journal of Biological Diversity, 25(4). DOI: 10.13057/biodiv/d250455
Assan D, Huang Y, Mustapha U F, Addah MN, Li G & Chen H. 2021. Fish feed intake, feeding behavior, and the physiological response of apelin to fasting and refeeding. Frontiers in endocrinology, 12, 798903. https://doi.org/10.3389/fendo.2021.798903
Bärlocher, F., & Rennenberg, H. (2014). Food chains and nutrient cycles. Ecological Biochemistry: Environmental and Interspecies Interactions, 92-122. https://doi.org/10.1002/9783527686063.ch6
Bégin PN, & Vincent WF.2017.Permafrost thaw lakes and ponds as habitats for abundant rotifer populations. Arctic Science. 3(2). 354-377. https://doi.org/10.1139/as-2016-001
Charette, C., & Derry, A. M. (2016). Climate alters intraspecific variation in copepod effect traits through pond food webs. Ecology, 97(5), 1239-1250. https://doi.org/10.1890/15-0794.1
Chen X, Liu B & Li Y. 2022. Fish Prey, Food Habits, and Interspecific Relationships. Biology of Fishery Resources, 143-164. 10.1007/978-981-16-6948-4_6
Colombo SM. 2020.Physiological considerations in shifting carnivorous fishes to plant-based diets. In Fish physiology (Vol. 38, pp. 53-82). Academic Press. https://doi.org/10.1016/bs.fp.2020.09.002
Conquest L, Burr R, Donnelly R, Chavarría JB & Gallucci V. 2023. Sampling methods for stock assessment for small-scale fisheries in developing countries. In Stock Assessment (pp. 179-225). CRC Press. https://doi.org/10.1201/9781003421252-4
Cooke, S. J., Martins, E. G., Struthers, D. P., Gutowsky, L. F., Power, M., Doka, S. E., ... & Krueger, C. C. (2016). A moving target—incorporating knowledge of the spatial ecology of fish into the assessment and management of freshwater fish populations. Environmental monitoring and assessment, 188, 1-18. DOI 10.1007/s10661-016-5228-0
Darmawan A, Mahmudi M, Nisa TW, Putri CD, Gurinda GA, Putri AW. 2019. Morphometric assessment of ranu grati using GPSMAP 585 and GIS. OLDI (Oseanologi dan Limnologi di Indonesia) 4 (3): 205 213. DOI: 10.14203/oldi.2019.v4i3.261
El-Naggar HA, Allah HMK, Masood MF, Shaban WM, & Bashar MA.2019. Food and feeding habits of some Nile River fish and their relationship to the availability of natural food resources. The Egyptian Journal of Aquatic Research. 45(3). 273-280.https://doi.org/10.1016/j.ejar.2019.08.004
Francé J, Varkitzi I, Stanca E, Cozzoli F, Skeji? S, Ungaro N & Basset A.2021. Large-scale testing of phytoplankton diversity indices for environmental assessment in Mediterranean sub-regions (Adriatic, Ionian and Aegean Seas). Ecological indicators, 126. 107630. https://doi.org/10.1016/j.ecolind.2021.107630
Glibert PM, Heil CA. Wilkerson FP & Dugdale RC.2018. Nutrients and harmful algal blooms: dynamic kinetics and flexible nutrition. Global ecology and oceanography of harmful algal blooms. 93-112. https://doi.org/10.1007/978-3-319-70069-4_6
Gilbert JJ, & Bogdan KG.2019. Rotifer grazing: in situ studies on selectivity and rates. In Trophic interactions within aquatic ecosystems (pp. 97-133). Routledge. https://doi.org/10.4324/9780429269608
Goldstein, R. M., & Simon, T. P. (2020). Toward a united definition of guild structure for feeding ecology of North American freshwater fishes. In Assessing the sustainability and biological integrity of water resources using fish communities (pp. 123-202). CRC Press. https://doi.org/10.1201/9781003068013
Gerking, Shelby D. 2014. Feeding ecology of fish. Elsevier
Lomartire S, Marques JC & Gonçalves AM.2021.The key role of zooplankton in ecosystem services: A perspective of interaction between zooplankton and fish recruitment. Ecological Indicators.129.107867. https://doi.org/10.1016/j.ecolind.2021.107867
Manickam N, Santhanam P & Saravana Bhavan P. 2019. Techniques in the collection, preservation and morphological identification of freshwater zooplankton. Basic and Applied Zooplankton Biology, 139-195. 10.1007/978-981-10-7953-5_5
Manko P. 2016. Stomach content analysis in freshwater fish feeding ecology. University of Prešov
Neves MP, Delariva RL, & Wolff L. 2015. Diet and ecomorphological relationships of an endemic, species-poor fish assemblage in a stream in the Iguaçu National Park. Neotropical Ichthyology, 13, 245-254. https://doi.org/10.1590/1982-0224-20140124
Oz Yasar C, Fletcher L, & Camargo-Valero MA.2023. Effect of macronutrients (carbon, nitrogen, and phosphorus) on the growth of Chlamydomonas reinhardtii and nutrient recovery under different trophic conditions. Environmental Science and Pollution Research, 30(51). 111369-111381. https://doi.org/10.1007/s11356-023-30231-2
Potapov, A. M., Brose, U., Scheu, S., & Tiunov, A. V. (2019). Trophic position of consumers and size structure of food webs across aquatic and terrestrial ecosystems. The American Naturalist, 194(6), 823-839. DOI: 10.1086/705811
Rahmi I, Arfiati D & Musa M.2022. Composition of Plankton in Waters and Digestive of Vanname Shrimp (Litopenaeus vannamei) with Semi-biofloc System of Cultivation. NeuroQuantology, 20(21), 41.DOI:10.48047/NQ.2022.20.21.NQ99005
Riouchi O, Skalli A, Rahhou A, Loukili H, Gueddari H, Choukri R & Baghour M.2024. The influence of the environment on the diversity of Euglena species and their abundance in the lagoon of Nador-Morocco. In E3S Web of Conferences (Vol. 527, p. 01021). EDP Sciences.
Saraswati E & Perdhana GO.2020. Analysis of stomach content of Nemipterus japonicus from the Blimbingsari waters, Banyuwangi, East Java. In IOP Conference Series: Earth and Environmental Science (Vol. 404, No. 1, p. 012019). IOP Publishing. DOI 10.1088/1755-1315/404/1/012019
Sasso, S., Stibor, H., Mittag, M., & Grossman, A. R. (2018). From molecular manipulation of domesticated Chlamydomonas reinhardtii to survival in nature. elife, 7, e39233.1(2), 448-455. https://doi.org/10.7554/eLife.39233
Steinberg CE.2018. Diets and digestive tracts–‘Your food determines your intestine’. Aquatic animal nutrition: A mechanistic perspective from individuals to generations, 9-59. https://doi.org/10.1007/978-3-319-91767-2_2
Stavrescu-Bedivan MM, Scaeteanu GV, Madjar RM, Manole MS, Staicu AC, Aioanei FT & Nicolae, CG.2016. Interactions between fish well-being and water quality: a case study from MoriiLake area, Romania. Agriculture and Agricultural Science Procedia, 10, 328-339. https://doi.org/10.1016/j.aaspro.2016.09.071
Suthers I, Rissik D & Richardson A (Eds.).2019. Plankton: A guide to their ecology and monitoring for water quality. CSIRO publishing.
Taleb AH.2019. Importance of plankton to fish community. Biological research in aquatic science
Traugott, M., Thalinger, B., Wallinger, C., & Sint, D. (2021). Fish as predators and prey: DNA?based assessment of their role in food webs. Journal of Fish Biology, 98(2), 367-382. https://doi.org/10.1111/jfb.14400
Umi, W. A. D., Yusoff, F. M., Aris, A. Z., & Sharip, Z. (2018). Rotifer community structure in tropical lakes with different environmental characteristics related to ecosystem health. Journal of Environmental Biology, 39(5), 795-807. DOI:10.22438/jeb/39/5(SI)/30
Villéger S, Brosse S, Mouchet M, Mouillot D & Vanni MJ. 2017. Functional ecology of fish: current approaches and future challenges. Aquatic Sciences. (79) 783-801. https://doi.org/10.1007/s00027-017-0546-z
Winfree R, Fox JW, Williams NM, Reilly JR & Cariveau DP.2015. Abundance of common species, not species richness, drives delivery of a real?world ecosystem service. Ecology letters, 18(7), 626-635. https://doi.org/10.1111/ele.12424
Xu S, Xiao Y, Xu Y, Su L, Cai Y, Qi Z & Lakshmikandan M.2024. Effects of seasonal variations and environmental factors on phytoplankton community structure and abundance in Beibu Gulf, China. Ocean & Coastal Management, 248, 106982. https://doi.org/10.1016/j.ocecoaman.2023.106982
Zato? M, Borszcz T & Rakoci?ski M.2017.Temporal dynamics of encrusting communities during the Late Devonian: a case study from the Central Devonian Field, Russia. Paleobiology, 43(4), 550-568. https://doi.org/10.1017/pab.2017.8

Most read articles by the same author(s)