Evaluation of performance, diversity, and trait relationships of butterfly pea (Clitoria ternatea) genotypes M4 generations

##plugins.themes.bootstrap3.article.main##

TRY ZULCHI
ALI HUSNI
DWINITA W. UTAMI
REFLINUR
MIA KOSMIATIN
HARIS MAULANA
TARKUS SUGANDA
VERGEL CONCIBIDO
AGUNG KARUNIAWAN

Abstract

Abstract. Zulchi T, Husni A, Utami DW, Reflinur, Kosmiatin M, Maulana H, Suganda T, Concibido V, Karuniawan A. 2024. Evaluation of performance, diversity, and trait relationships of butterfly pea (Clitoria ternatea) genotypes M4 generations. Biodiversitas 25: 3476-3485. Butterfly pea, a versatile forage plant with perennial growth and adaptability, is the focus of a crop improvement program aimed at enhancing production performance and nutritional contents through mutation polyploid induction. This study aimed to identify butterfly pea genotypes with higher agronomic values, genetic diversity, trait relationships, and traits-specific excellence. The mutants (M4) comprised 95 genotypes, and local varieties were used as controls. The experiments were conducted in an augmented design with local cultivars used as checks in Bogor, Indonesia, from March to August 2021. The results revealed that butterfly pea genotypes improved in stem diameter, fresh and dry weight biomass, and number of seeds per pod compared to local cultivars by 8.6%, 9.07%, 7.82%, and 5.37%, respectively. The nutritional content of protein, carbohydrates, and lipids was also enhanced. Additionally, early flowering times were detected for the butterfly pea genotypes. Further, principal component analysis indicated that the genetic diversity of butterfly pea mutants is broad, underscoring the richness of the research data. The four axes of the analysis had eigenvalues ranging from 2.573 to 1.129, with a cumulative value of 67.56% and a degree of variation contributed by dry-weight biomass. Genetically, butterfly pea genotypes can be categorized into four groups on genetic distance, with several variables displaying positive correlations. Butterfly pea genotypes such as BP78, BP70, BP58, and BP46 have been earmarked as genotypes possessing high biomass and good nutritional qualities. The butterfly pea genotypes in the current study have the potential to be selected for improvement or utilized as a parent in a hybridization program.

##plugins.themes.bootstrap3.article.details##

References
Abreu MLC, Vieira RAM, Rocha NS, Araujo RP, Glória LS, Fernandes AM, De Lacerda PD, Gesualdi A. 2014. Clitoria ternatea L. as a potential high quality forage legume Asian-Australasian. J Anim Sci 27: 169-178. DOI: 10.5713/ajas.2013.13343.
Acquaah G. 2012. Principles of Plant Genetics and Breeding. (Second edition). John Wiley and Sons, Ltd., West Sussex. DOI: 10.1002/9781118313718.
Arumingtyas EL, Atiaturrochmah, Kusnadi J. 2023. Confirmation of mutation and genetic stability of the M4 generation of chili pepper’s (Capsicum frutescens L.) Ethyl Methane Sulfonate (EMS) mutant based on morphological, physiological and molecular characters. Biodiversitas 24 (1): 531-538. DOI: 10.13057/biodiv/d240162.
Baraki F, Gebregergis Z, Teame G, Belay Y. 2023. Augmenting productivity and profitability through sesame–legume intercropping. Heliyon 9 (7): e18333. DOI: 10.1016/j.heliyon.2023.e18333.
Capstaff NM, Miller AJ. 2018. Improving the yield and nutritional quality of forage crops. Front Plant Sci 9: 535. DOI: 10.3389/fpls.2018.00535.
da Cruz DP, Oliveira TRAde, Gomes ABS, Sant’Anna CQ daSSde, Gravina LM, Rocha RS, Jaeggi MEPdaC, Pereira IM, Entringer GC, Gravina GDA, Vivas M, Daher RF. 2020. Selection of cowpea lines for multiple traits by GYT biplot analysis. J Agric Stud 8 (2): 124. 10.5296/jas.v8i2.16003.
Diouf M, Diallo S, Badiane FA, Diack O, Diouf D. 2021. Development of new cowpea (Vigna unguiculata) mutant genotypes, analysis of their agromorphological variation, genetic diversity and population structure. Biocell 45: 345-362. DOI: 10.32604/BIOCELL.2021.013706.
Direktorat Jenderal Peternakan dan Kesehatan Hewan, Kementerian Pertanian RI (Ditjen PKH). 2023. Statistik Peternakan dan Kesehatan Hewan, Jakarta. [Indonesian]
Dwivedi SL, Harrison PH, Spillane C, McKeown PC, Edwards D, Goldman I, Ortiz R. 2023. Evolutionary dynamics and adaptive benefits of deleterious mutations in crop gene pools. Trends Plant Sci 28 (6): 685-697. DOI: 10.1016/j.tplants.2023.01.006.
Filio YL, Maulana H, Aulia R, Suganda T, Ulimaz TA, Aziza V, Concibido V, Karuniawan A. 2023. Evaluation of Indonesian butterfly pea (Clitoria ternatea L.) using stability analysis and sustainability index. Sustainability 15: 2459. DOI: 10.3390/su15032459.
Ghanbari MA, Jowkar A, Salehi H, Zarei M. 2019. Effects of polyploidization on petal characteristics and optical properties of Impatiens walleriana (Hook.) Plant Cell Tiss Organ Cult 138: 299-310. DOI: 10.1007/s11240-019-01625-3.
Girgel U. 2021. Principle Component Analysis (PCA) of bean genotypes (Phaseolus vulgaris L.) concerning agronomic, morphological and biochemical characteristics Appl Ecol Environ Res 19: 1999-2011. DOI: 10.15666/aeer/1903_19992011.
Heuzé V, Tran G, Boval M dan Bastianelli D, 2016. Butterfly pea (Clitoria ternatea). 15:18. Feedipedia, A Programme by INRA, CIRAD,AFZ and FAO15:18. http://www.feedipedia.org/node/318.
Hwang SH, Kim MS, Park SY. 2015. Improvement of chromosome doubling efficiency in Cymbidium hybrids by colchicine and oryzalin treatment. Kor J Hortic Sci Technol 33 (6): 900-910. DOI: 10.7235/hort.2015.15063.
Innes LA, Denton MD, Dundas IS, Peck DM, Humphries AW. 2021. The effect of ploidy number on vigor, productivity, and potential adaptation to climate change in annual Medicago species. Crop Sci 61 (1): 89-103. DOI: 10.1002/csc2.20286.
Karuniawan A, Ulimaz TA, Ustari D, Suganda T, Concibido V. 2021. Characterization of butterfly pea as a model of underutilized crop management in Indonesia. In: Sabran M, Lestari P, Setyawan D, Hardiarto T, Mastur, TeryanaRT (eds). Boosting the Big Data of Plant with Digital Identifiers. IAARD Press, Jakarta.
Manivannan A, Anandakumar CR, Ushakumari R, Dahiya GS. 2016. Characterization of Indian clusterbean (Cyamopsis tetragonoloba (L.) Taub.) genotypes using qualitative morphological traits. Genet Resour Crop Evol 63 (3): 483-493. DOI: 10.1007/s10722-015-0266-y.
Manzoor A, Ahmad T, Bashir MA, Hafiz IA, Silvestri C. 2019. Studies on colchicine induced chromosome doubling for enhancement of quality traits in ornamental plants. Plants 8 (7): 194. DOI: 10.3390/plants8070194.
Muchugi A, Hanson J, Habte E, Sime Y, Alemayehu A, Alercia A, Cerutti AL, Lopez F. 2023. Key Descriptors for Forage Legumes. ILRI and FAO, Rome.
Nulik J, Bell L, Cox K, Hau DK, Hosang E, Rebo R, Liunokas Y, Abi Y, Uran J. 2017. Effect of techniques and time of sowing, seed rate, and weed management on selected herbaceous legumes establishments in East Nusa Tenggara, Indonesia. Jurnal Ilmu Ternak Dan Veteriner 21 (3): 159. DOI: 10.14334/jitv.v21i3.1586.
Nulik J, Dalgliesh N, Cox K, Gabb S. 2013. Mengintegrasikan Legum Herba ke Dalam Sistem Tanaman dan Ternak di Indonesia Bagian Timur. ACIAR, Canberra. [Indonesian]
Nurhasanah, Hindersah R, Suganda T, Concibido V, Sundari, Karuniawan A. 2023. The first report on the application of ISSR markers in genetic variance detection among butterfly pea (Clitoria ternatea L.) accession in North Maluku Province, Indonesia. Horticulturae 9: 1059. DOI: 10.3390/horticulturae9091059.
Oladosu Y, Rafii MY, Abdullah N, Hussin G, Ramli A, Rahim HA, Miah G, Usman M. 2016. Principle and application of plant mutagenesis in crop improvement: A review. Biotechnol Biotechnol Equipment 30: 1-16. DOI: 0.1080/13102818.2015.1087333.
Petersen RG. 1994. Agricultural Field Experiments: Design and Analysis Books in Soils, Plants, and The Environment (1st ed.). CRC Press, New York. DOI: 10.1201/9781482277371.
Rauf S, Ortiz R, Malinowski DP, Clarindo WR, Kainat W, Shehzad M, Waheed U, Hassan SW. 2021. Induced polyploidy: A tool for forage species improvement. Agriculture 11: 210. DOI: 10.3390/agriculture11030210.
Sattler MC, Carvalho CR, Clarindo WR. 2016. The polyploidy and its key role in plant breeding. Planta 243 (2): 281-296. DOI: 10.1007/s00425-015-2450-x.
Schultze-Kraft R, Rao IM, Peters M, Clements RJ, Bai C, Liu G. 2018. Tropical forage legumes for environmental benefits: An overview. Trop Grassl-Forrajes Trop 6: 1-14. DOI: 10.17138/TGFT(6)1-14.
Shamnad J. 2019. Mineral and nutritional potential of Clitoria ternatea L. Variants as forage. J Trop Agric 57 (2): 163-166.
Tziouvalekas M, Tigka E, Kargiotidou A, Beslemes D, Irakli M, Pankou C, Arabatzi P, Aggelakoudi M, Tokatlidis I, Mavromatis A, Qin R, Noulas C, Vlachostergios DN. 2022. Seed yield, crude protein and mineral nutrients of lentil genotypes evaluated across diverse environments under organic and conventional farming. Plants 11: 3328. DOI: 10.3390/plants11233328.
Wijaya A. 2021. Iklim di Wilayah Bogor. [Skripsi]. Institut Pertanian Bogor, Bogor. [Indonesian]
Yan W, Frégeau-Reid J. 2018. Genotype by Yield?Trait (GYT) biplot: A novel approach for genotype selection based on multiple traits. Sci Rep 8: 8242. DOI: 10.1038/s41598-018-26688-8.
Zulchi T, Husni A, Utami DW, Reflinur, Kosmiatin M, Suganda, Karuniawan A. 2022. Morphological performances of mutant butterfly pea (Clitoria ternatea L.). AIP Conf Proc 2462: 020030. DOI: 10.1063/5.0075592. [Indonesian]

Most read articles by the same author(s)

1 2 > >>