Isolation and characterization of soil actinobacteria as cellulolytic enzyme producer from Aceh Besar, Indonesia




Abstract. Fitri L, Bessania MA, Septi N, Suhartono S. 2021. Isolation and characterization of soil actinobacteria as cellulolytic enzyme producer from Aceh Besar, Indonesia. Biodiversitas 22: 5169-5180. Cellulolytic actinobacteria are cellulase-producing bacteria capable of degrading cellulose. This study aimed to isolate, characterize, evaluate the cellulolytic ability, and to determine physiological characterization of soil cellulolytic actinobacteria isolated from the Ujung Pancu area, Aceh Besar. Isolation of actinobacteria from soil samples was performed using serial dilution method on Yeast Malt Agar (YMA) medium. Morphological characterization was carried out by growing isolates on YMA, Oatmeal Agar (OA), and Yeast Starch Agar (YSA) media. Cellulolytic ability was determined by calculating the cellulolytic index (IS) on 1% carboxymethyl cellulose (CMC) medium after adding 0.1% congo red solution. Physiological characterization of cellulolytic actinobacteria tested in this study was salinity, pH, and carbon source in liquid Yeast Malt (liquid YM), and the growth was measured at a wavelength of 581nm. The results showed that a total of nine isolates of actinobacteria were isolated, which belonged to the genus Streptomyces. Cellulolytic test results showed that eight isolates had the ability to degrade cellulose. Isolates AUP-04, AUP-03, and AUP-01 had the highest cellulolytic index value. Physiological characterization results revealed that three isolates had different tolerances for salinity levels, pH, and types of carbon sources. AUP-03 isolate grew well at 10% salinity with an OD value of 0.88, isolate AUP-01 grew at 5% salinity with an OD value of 0.49, whereas isolate AUP-04 grew well on media that did not contain salinity. All three isolates grew well at pH 6 with OD values of 0.93, 1.12, and 1.27. AUP-03 and AUP-01 isolates grew well on media containing dextrose as carbon source with OD values of 0.154 and 0.17, respectively, while isolate AUP-04 grew well on glucose-containing media with an OD value of 0.22.


Akond, M. A., Jahan, M. N., Sultana, N., & Rahman, F. 2016. Effect of Temperature, pH and NaCl on The Isolates of Actinomycetes from Straw and Compost Samples from Savar, Dhaka, Bangladesh. Am. J. Microbiol. and Immunology. 1: 10-15.
Alam, M. S., Sarjono, P. R., Aminin, A. L. N. 2004. Isolation, Purification, Caharacterization of Cellulolytic Enzymes Produced by Streptopmyces omiyaensin. J. Bio. Sci. 10: 1647-1653.
Algafari, R. N. 2014. Assessment of Profile Depth, Site of Sampling, Type of Media and Methods Used for the Isolation of Actinomycetes. Int. J. Microb. Res. 6: 553-558.
Araujo-Melo, R. D. O., de Oliveira, T. H. B., de Oliveira, C. V. J., de Araújo, J. M., de Sena, K. X., & Coelho, L. C. B. B. 2019. Actinobacteria: a renewable source of bioactive molecules with medical, industrial and pharmacological importance. Advances and Trends in Biotechnology and Genetics. 1: 63-79.
Armaida, E., & Khotimah, S. 2016. Characterization of Porifera-Associated Actinomycetes (Axinella spp.) from Lekumutan Island, West Kalimantan. Protobiont, 1: 69?70. [Indonesian].
Asquith, E. A., Evans, C. A., Geary, P. M., Dunstan, R. H., & Cole, B. 2013. The role of Actinobacteria in taste and odour episodes involving geosmin and 2-methylisoborneol in aquatic environments. J. Water Suppl: Research and Technology – AQUA. 62: 452-467.
Astuty, E. 2017. Isolation and Morphological Characterization of Indigenous Actinomycetes from Peat. J. Natur. & Envir. Sci. 16: 7–15. [Indonesian].
Bai, S., Kumar, M. R., Kumar, D. M., Balashanmugam, P., Kumaran, M. B., & Kalaichelvan, P. T. 2012. Cellulase production by Bacillus subtilis isolated from cow dung. Arch. Appl. Sci. Res. 4: 269-279.
Barka, E.A., Vasta, P., Sanchez, L., Gaveau-Vallant, N., Jacquard, C., Klenk, H-P., Clement, C., Ouhdouch, Y., & van Wezel, G.P. 2016. Taxonomy, Physiology, and Natural Products of Actinobacteria. Microbiol. & Mol. Biol. Rev. 80: 1-43. [Indonesian].
Behera, B. C., Sethi, B. K., Mishra, R. R., Dutta, S. K., & Thatoi, H. N. 2017. Microbial cellulases–Diversity & biotechnology with reference to mangrove environment: A review. J. Gen. Eng. & Biotech. 15: 197-210.
Bhattarai, B. 2015. Variation of Soil Microbial Population in Different Soil Horizons. J. Microbiol. & Experi. 2: 75–78.
Bull, A.T. 2010. Actinobacteria of The Extremobiosphere in Extremophiles . Springer-Verlag, Berlin.
Choi, Y. W., I. J. Hodgkiss, & K. D. Hyde. 2005. Enzyme Production by Endophytes of Brucea Javanica, Journal Agricultural Technology, 1, 55-66.
Da Vinha, F. N. M., Gravina-Oliveira, M. P., Franco, M. N., Macrae, A., da Silva Bon, E. P., Nascimento, R. P., & Coelho, R. R. R. 2011. Cellulase production by Streptomyces viridobrunneus SCPE-09 using lignocellulosic biomass as inducer substrate. Appl. Biochem. & Biotech. 164, 256-267.
Das, S., Lyla, P.S & Khan, S.A. 2008. Distribution and genetic composition of culturable marine actinomycetes from the sediments of Indian continental slope of Bay of Bengal. Chi. J. Oce. & Limnol. 26: 166-177.
Dastager, S., Li, W.J., Dayanand, A., Tang, S.K., Tiang, S.P., Zhi, X.Y., Xu, L.H., & Jiang, C.L. 2006. Separation, Identification, and Analysis of Pigment (melanin) production in Streptomyces. Afr. J. Biotech. 5: 1131-1134.
Devi, Y. G., Kumar, B. L., Lokeswari, N., Arjun, P., & Harasriramulu, S. 2013. Isolation of the marine actinomycetes from the Bay of Bengal sediments. Int. Res. J. Pharm. & Appl. Sci. 3:121-123.
Dhanasekaran, D., & Yi, J. 2016. Actinobacteria: Basics and Biotechnological Applications. IntechOpen, London.
Farida, Y. 2008. Combined method of screening marine actinomycetes producing compounds with anticancer potential. [Dissertation]. Universitas Gadjah Mada, Yogyakarta. [Indonesian].
Fitri L., Putri KA, Suhartono, Ismail, YS. 2019. Isolation and characterization of thermophilic actinobacteria as proteoliytic enzyme producer from Ie Seuum Hot Spring, Aceh Besar, Indonesia. Biodiversitas. 20: 2802-2808.
Fitri, L., Meryandini, A., Iswantini, D., Lestari, Y. 2017. Characterization of Ethanolic Extract of Streptomyces sp. as a pancreatic lipase inhibitor produced by endophytic Streptomyces sp. AEBg12. Biosaintifika. 9: 177-184.
Fitri, L., Putri, K. A., & Ismail, Y. S. 2019. Isolation and characterization of thermophilic actinobacteria as proteolytic enzyme producer from Ie Seuum Hot Spring, Aceh Besar, Indonesia. Biodiversitas. 20: 2802-2808.
Gorji, T., Sertel, E., & Tanik, A. (2017). Monitoring soil salinity via remote sensing technology under data scarce conditions: A case study from Turkey. Eco. Ind., 74, 384-391.
Hamid, A. A., Ariffin, S., & Mohamad, S. A. S. 2015. Identification and Optimal Growth Conditions of Actinomycetes Isolated from Mangrove Environment. J. Analy. Sci. 19: 904-910.
Hand, T. H., Das, A., Roth, M. O., Smith, C. L., Jean-Baptiste, U. L., & Li, H. 2018. Phosphate Lock Residues of Acidothermus Cellulolyticus Cas9 are Critical to its Substrate Specificity. J. Sust. Chem. & Eng. 7: 2908-2917.
Husnah, M., Suhartono., Yulvizar, C. (2012). Isolation of soil Actinomycetes from Forest Park of Pocut Merah Intan as potential producer of antimicrobial compounds. In Proceeding of The 2nd Annual International Conference Syiah Kuala University 2012 & The 8th IMT-GT Uninet Bioscience Conference (pp. 307-312). AIC Universitas Syiah Kuala.
Kanti, A. 2005. Cellulolytic Actinomycetes isolated from soil in Bukit Dua Belas National Park, Jambi. Biodiversitas. 6: 85–89.
Kumalasari, A. M. 2012. The potential of actinomycetes as a source of antibiotic bioactive compounds from the Bantimurung karst area, South Sulawesi. Pelita-Jurnal Penelitian Mahasiswa. UNY. 59-72. [Indonesian].
Lee, Y. Y., & Fan, C. (2020). Mechanistic exploration of the catalytic modification by co-dissolved organic molecules for micropollutant degradation during fenton process. Chemosphere, 258, 127338.
Luti, K. J. K., & Yonis, R. W. 2014. An induction of Undecylprodigiosin Production from Streptomyces coelicolor by Elicitation with Microbial Cells Using Solid State Fermentation. Iraq. J. Sci. 55: 1553-1562.
Maheswari, M. U., & Chandra, T. S. 2000. Production and potential applications of a xylanase from a new strain of Streptomyces cuspidosporus. World Journal of Microbiology and Biotechnology. 16: 257-263.
Manivasagan, P., Venkatesan, J., Sivakumar, K., & Kim, S. K. 2010. Pharmaceutically active secondary metabolites of marine actinobacteria. Microbiol. Res. 169: 262-278.
Murtiyaningsih, H., & Hazmi, M. (2015). Isolation and Test of Cellulase Enzyme Activity on Cellulolytic Bacteria from Waste Soil. J.Agritop, 15, 294-297. [Indonesia]
Nurkanto A. 2007. Identification of forest soil actinomycetes after bangkirai hill fire in east kalimantan and the potential as cellulose degradation and phosphate solvent. Biodeversitas 8: 314-319.
Nurkanto, A. 2008. The Diversity of Actinomycetes in the Waigeo Islands, Raja Ampat Regency, Papua and Its Potential as Cellulose Degraders and Phosphate Solvents. Berita Biologi. 9: 9-18. [Indonesian].
Nurkanto, A., & Agusta, A. 2015. Molecular Identification and Morpho-Physiological Characterization of Actinomycetes Producing Antimicrobial Compounds. J. Bio. Ind. 2: 193-205. [Indonesian].
Oskay, M. 2009. Antifungal and Antibacterial Compounds from Streptomyces strains. Afr. J. Biotech.. 8: 3007-3017.
Patil, R.C., Mule, A.D., Mali, G.V., Tamboli, R.R., Khobragade, R.M., Gaikwad, S.K., Katchi, V.I., and Patil, D. 2011. Isolation of Marine Actinomycetes from the Mangrove Swamps for Biotechnological Exploration. J. Life Sci. 5: 1030–1036.
Pesrita, A., Linda, T. M., & Devi, S. 2017. Selection and Activity of Local Riau Actinomycetes Cellulase Enzymes on Sugarcane Bagasse Lignocellulosic Media. Jurnal Riau Biologia. 2. [Indonesian].
Prasad, P., Singh, T., & Bedi, S. 2013. Characterization of the cellulolytic enzyme produced by Streptomyces griseorubens (Accession No. AB184139) isolated from Indian soil. J. of King Saud Univ-Sci. 25, 245-250.
Putri, A.L., & Setiawan, R. 2019. Isolation and Screening of Actinomycetes producing Cellulose and Xylanase from Mamasa Soil, West Sulawesi. In IOP Conference Series: Earth and Enviromental Science. IOP Publishing. [Indonesian]
Putri, A.L., Lisdiyanti, P & Kusmiati, M. 2018. Identification of Mamasa Freshwater Sediment Actinomycetes, West Sulawesi and Their Activities as Antibacterial and Phosphate Solvents. J. Biotek. & Bios. Indo. 5: 139-148.
Rahayu, S., Fitri, L., & Ismail, Y. S. 2019. Endophytic actinobacteria isolated from ginger (Zingiber officinale) and its potential as a pancreatic lipase inhibitor and its toxicity. Biodiversitas. 20: 1313-1317.
Rajagopal, G., & Kannan, S. 2017. Systematic characterization of potential cellulolytic marine actinobacteria Actinoalloteichus sp. MHA15. Biotech. rep. 13: 30-36.
Raytapadar, S., & Paul, A. K. (2001). Production of an Antifungal Antibiotic by Streptomyces aburaviensis IDA-28. Microbiol. res. 155 : 315-323.
Roeßler, M. dan Müller, V. 2002. Chloride, a New Environmental Signal Molecule Involved in Gene Regulation in a Moderately Halophilic Bacterium, Halobacillus halophilus. J. Bacteriol. 184 : 6207-6215.
Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. 2014. The Prokaryotes: Actinobacteria. Springer, Berlin.
Shivakumar, D.K. 2000. Actinomycetes. Annamalai University Press, India.
Singh, O.V., Gabani P., Copeland E. & Chandel AK. 2013. Ultraviolet Radiation-Resistant Isolates Revealed The Cellulose-Degrading Species Cellulosimicrobium Cellulans (UVP1) and Bacillus pumilus (UVP4). Biotech. & Biochem. Appl. 59: 395–404.
Suhartono S, Artika W. 2017. Isolation and protease activity assay of local actinobacteria isolates (AKJ-09) Aceh. Bioleuser 1: 116-120. [Indonesian]
Sukmawaty, E., Sari, S. R., & Masri, M. 2020. Characterization of Soil Actinomycetes From Malino Pine Forest Rhizosphere of South Sulawesi. Elkawnie: J. Islam. Sci. & Tech. 6; 315-328.
Teixeira, N., Parolo, C. C. F., Malz, M., & Devine, D. A. 2020. Gene Expression Profile of Scardovia spp. in The Metatranscriptome of Root Caries. Brazil. Or. Res. 1 : 34-47.
Tseng M. 2007. Polyester-Degrading Thermophilic Actinomycetes Isolated from Different Environments in Taiwan. Biodegradation. 18 : 579-583.
Utarti, E., Suwanto, A., Suhartono, T.M., & Meryandini, A. 2020. Identification of Indigenous Cellulolytic and Xylanolytic Actinomycetes. Berkala Saintek. 1: 1-5. [Indonesian].
Vinothini, G., Kavitha, R., Latha, S., Arulmozhi, M., & Dhanasekaran, D. 2018. Cell aggregating temperament and biopotency of cultivable indigenous actinobacterial community profile in chicken (Gallus gallus domesticus) gut system. Arab. J. Sci. & Eng. 43: 3429-3442.
Wink, J., Mohammadipanah, F., & Hamedi, J. 2017. Biology and Biotechnology of Actinobacteria. Springer International Publishing, Switzerland.
Wulandari, S., & Sulistyani, N. 2016. Effect of Media on Growth of Actinomycetes Isolate Code Al35 and Optimization of Antibacterial Metabolite Production Based on Fermentation Time and pH. Media Farmasi: Jurnal Ilmu Farmasi. 13: 186-198. [Indonesian].
Yakoob, R., & Pradeep, B. V. 2019. Bifidobacterium sp as Probiotic Agent-Roles and Applications. J. Pur. Appli. Microbiol. 13: 1407-1417.
Yi Jiang., Li, Q., Chen, X., & Jiang, C. 2016. Isolation and Cultivation Methods of Actinobacteria. Bas. & Biotech. Appli. 2: 42-46.

Most read articles by the same author(s)

1 2 > >>